
PHY 304, II-Semester 2021/22, Assignment 1 solution

(1) Perturbed Hydrogen atoms [10pts]: Through interaction with light, a Hydrogen
atom has ended up in an equal superposition of the states | 3s0 ⟩ (with n = 3, ℓ = 0,
m = 0) and | 3p0 ⟩ (with n = 3, ℓ = 1, m = 0) at t = 0:

Ψ(r, t = 0) =
1√
2
(ϕ300(r) + ϕ310(r)) . (1)

(a) Find the explicit probability distribution of the position of the electron as a function
of time. Try to visualize this as best you can and discuss. Hint: You may want to
look at / use Assignment 6Q3. [2pts]
Solution: The normalised hydrogen states [from Eq. (4.91)(4.92)(4.97)]
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1√
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2
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3/2
0

(
1−

(
2r

3a0

)
+

2

27
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cos θ (3)

We find that both the states satisfy ϕ∗ = ϕ. Let E1 and E2 be the energies of state
ϕ300 and ϕ310 respectively. Then the time dependent wavefunction is given by

Ψ(r, t) =
1√
2

(
e−i

E1
ℏ tϕ300(r) + e−i

E2
ℏ tϕ310(r)

)
(4)

The probability distribution of the position of the electron is

|Ψ(r, t)|2 = 1

2
(|ϕ300(r)|2 + |ϕ310(r)|2 + e

it
ℏ (E1−E2)ϕ∗

300(r)ϕ310(r) + c.c) (5)

=
1

2
(|ϕ300(r)|2 + |ϕ310(r)|2 + 2 cos

(
t

ℏ
(E1 − E2)

)
ϕ300(r)ϕ310(r)) (6)

=

(
2r2

27a20
− 2r

3a0
+ 1
)

2e
− 2r

3a0

54πa30
+

4r2
(
1− r

6a0

)
2 cos2(θ)e

− 2r
3a0

729πa50

+
2
√

2
3
r
(

2r2

27a20
− 2r

3a0
+ 1
)(

1− r
6a0

)
cos(θ)e

− 2r
3a0

81πa40
cos(ωt) (7)

where we have defined ω = (E2 − E1)/ℏ
The radial distribution Pr(r) is given by integrating r2 sin θ|Ψ(r, t)|2 over angular vari-
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ables

Pr(r) =

∫ π

0

sin θ dθ

∫ 2π

0

dφ r2 |Ψ(r, t)|2 (8)

= r2

(
2r2

27a20
− 2r

3a0
+ 1
)

2e
− 2r

3a0

54πa30

∫ π

0

sin θ dθ︸ ︷︷ ︸
=2

∫ 2π

0

dφ

+
4r4
(
1− r

6a0

)
2e

− 2r
3a0

729πa50

∫ π

0

sin θ cos2 θ dθ︸ ︷︷ ︸
− 1

3
[cos3 θ]π0=+ 2

3

∫ 2π

0

dφ

+
2
√

2
3
r3
(

2r2

27a20
− 2r

3a0
+ 1
)(

1− r
6a0

)
e
− 2r

3a0

81πa40
cos(ωt)

∫ π

0

sin θ cos θ dθ︸ ︷︷ ︸
=0

∫ 2π

0

dφ

=
2r2
(

2r2

27a20
− 2r

3a0
+ 1
)

2e
− 2r

3a0

27a30
+

16r4
(
1− r

6a0

)
2e

− 2r
3a0

2187a50
(9)

The radial probability distribution Pr(r) is the probability density of finding an electron
anywhere on a spherical surface of radius r

Figure 1: Radial probability distribution.

The angular probability distribution Pang(θ, φ) is obtained by integrating r2|Ψ(r, t)|2
over the radial coordinate

Pang(θ, φ) =

∫ ∞

0

|Ψ(r, t)|2r2dr (10)

=

∫ ∞

0

r2

(
2r2

27a20
− 2r

3a0
+ 1
)2

e
− 2r

3a0

54πa30
dr (11)
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+ cos2(θ)

∫ ∞

0

4r4
(
1− r

6a0

)
2e

− 2r
3a0

729πa50
dr (12)

+ cos(ωt) cos(θ)

∫ ∞

0

2
√

2
3
r3
(

2r2

27a20
− 2r

3a0
+ 1
)(

1− r
6a0

)
e
− 2r

3a0

81πa40
dr (13)

Explicitly evaluating the radial integrals with Mathematica we obtain

Pang(θ, φ) = 0.0397887 + 0.119366 cos2(θ) +−0.129949 cos(θ) cos(ωt)︸ ︷︷ ︸
=1,since ω=0

(14)

The angular distribution oscillates with a frequency given by ω = (E2 − E1)/ℏ. This
gives the time period of oscillations. For our case since E1 = E2, the frequency is
zero. The resultant angular distribution is shown in Fig. 2

Figure 2: Angular probability distribution. The distance of the yellow surface from the
origin in a direction of certain spherical angles θ, ϕ indicates Pang(θ, φ).

(b) What are the possible outcomes of measuring the magnitude of angular momentum
of the electron in the state (1), what are their probabilities, and how do those prob-
abilities change in time? [2pt]
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Solution: A measurement of angular momentum will give magnitude of angular mo-
mentum to be zero for ϕ300 (since l = 0) with 50% probability and ℏ

√
1(2) =

√
2ℏ

(since l = 1) with the other 50% for ϕ310. In time, the state evolves as

Ψ(r, t) =
1√
2

(
e−i

E1
ℏ tϕ300(r) + e−i

E2
ℏ tϕ210(r)

)
≡ c1(t)ϕ100(r) + c2(t)ϕ310(r). (15)

Since p1 = |c1|2 = 1/2 = const and same for p2, the probabilities do not change in
time.

(c) What is the probability of finding the electron at z > 0 in the state (1), and how does
this probability change in time? [2pts]
Solution: In terms of spherical polar coordinates the region z > 0 is given by
0 < θ < π/2. The probability to find the electron in the region 0 < θ < π/2 is given
by

p+ =
1

2

∫ ∞

0

r2dr

∫ π/2

0

sinθdθ

∫ 2π

0

dφ |Ψ(r, t)|2 (16)

=
1

2

∫ ∞

0

r2dr

∫ π/2

0

sinθdθ

∫ 2π

0

dφ︸ ︷︷ ︸
=2π

(|ϕ300(r)|2 + |ϕ310(r)|2 + e
it
ℏ (E1−E2)ϕ∗

300(r)ϕ310(r)

+ e
it
ℏ (E2−E1)ϕ∗

310(r)ϕ300(r)) (17)

Collecting the two hydrogen states required [from Eq. (4.91)(4.92)(4.97)] Using the
expressions for the hydrogen states from Eq. (2) and Eq. (3), we get

p+ = π

∫ ∞

0

r2dr

∫ π/2

0

sinθdθ(|ϕ300(r)|2 + |ϕ310(r)|2 + ϕ300(r)ϕ210(r)) (18)

There are three pieces to evaluate for which we use Mathematica.

(a) 1st piece:

π

∫ ∞

0

r2dr

∫ π/2

0

sinθdθ |ϕ300(r)|2 = π

∫ ∞

0

r2

(
2r2

27a20
− 2r

3a0
+ 1
)2

e
− 2r

3a0

27πa30
(19)

×
∫ π/2

0

sinθdθ︸ ︷︷ ︸
=1

(20)

=0.0397887π × 2 (21)

(b) 2nd piece:

π

∫ ∞

0

r2dr

∫ π/2

0

sinθdθ |ϕ310(r)|2 = π

∫ ∞

0

8r4
(
1− r

6a0

)2
e
− 2r

3a0

729πa50
dr (22)∫ π/2

0

sin θ cos2 θ dθ=− 1
3
[cos3(θ)]π0=+ 1

3
(23)

=0.0397867π × 2 (24)
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(c) Since ω = 0 we put cos(ωt) = 1 . We then get the 3rd piece:

2π

∫ ∞

0

r2dr

∫ π/2

0

sin θdθ ϕ300(r)ϕ310(r) (25)

= 2π

∫ ∞

0

4
√

2
3
r3
(

2r2

27a20
− 2r

3a0
+ 1
)(

1− r
6a0

)
e
− 2r

3a0

81πa40
dr

∫ π/2

0

sin θ cos θ dθ︸ ︷︷ ︸
= 1

2
[sin2 θ]

π/2
0 = 1

2

(26)

=− 0.129949× π (27)

Collecting all the pieces Eq. (21), Eq. (24) and Eq. (27) we get

p+ = 0.0917517 (28)

(d) What is the expectation value of the electronic dipole operator d̂ = −er̂ as function
of time? [2pts]
Solution: The expectation value is

⟨d̂(t)⟩ = −e

2

∫
d3r(r|ϕ300(r)|2 + r|ϕ310(r)|2 + re

it
ℏ (E1−E2)ϕ∗

300(r)ϕ310(r)

+ re
it
ℏ (E2−E1)ϕ∗

310(r)ϕ300(r)) (29)

From the expressions of hydrogen states Eq. (2) and Eq. (3) we see that |ϕ300(r)|2 and
|ϕ310(r)|2 are symmetric under r → −r. Thus the first two terms in Eq. (29) vanish
when integrated over. Also both ϕ300 and ϕ310 satisfy ϕ∗ = ϕ. These arguments results
in

⟨d̂(t)⟩ = −e

∫
d3r r ϕ310(r)ϕ300(r) (30)

= −e

∫ ∞

0

drr2
∫ π

0

dθ sin θ

∫ 2π

0

dφ ϕ300(r)

r sin θcosφr sin θ sinφ
r cos θ

ϕ310(r) (31)

= −êze

∫ ∞

0

2
√

2
3
r4
(

2r2

27a20
− 2r

3a0
+ 1
)(

1− r
6a0

)
cos(θ)e

− 2r
3a0

81πa40
dr

∫ π

0

cos2 θ sin θdθ︸ ︷︷ ︸
=− 1

3
[cos3(θ)]π0=+ 2

3

∫ 2π

0

dφ︸ ︷︷ ︸
=2π

(32)

= 9.28034× 10−11 × 4π

3
× eêz = 7.3484eêz (33)
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(e) From your knowledge of waves, optics and electro-magnetism, discuss the expected
interplay between an atom in this state and electro-magnetic waves. [2pts]
Solution: The above result does not have an oscillating dipole and therefore there
will be no electromagnetic radiation emitted. Though, if the above state is subjected
to an oscillating electromagnetic field, the dipole will start oscillating and then start
emitting electromagnetic radiation.

(2) Entanglement [10pts]:

(a) For the following two-particle states, identify which are entangled and which are not
[3pts]
Solution:

(i) Ψ(x, y) = 1√
2
[ϕ0(x− x0)ϕ3(y− y0) +ϕ2(x− x0)ϕ1(y− y0)] (position of particle 1

is x, position of particle 2 is y, ϕn(x) are normalised eigenstates of the simple
harmonic oscillator)
This is an entangled state since it cannot be expressed as a product of two single-
particle states.

(ii) Ψ(x, y) = ϕ0(x− x0)ϕ3(y − y0)
This is a separable state since it can be expressed as a product of two single-
particle states.

(iii) Ψ(x, y) = 1
2
[ϕ0(x)ϕ0(y)− ϕ0(x)ϕ1(y)− ϕ1(x)ϕ0(y) + ϕ1(x)ϕ1(y)]

This is a separable state since it can be expressed as a product of two single-
particle states.

Ψ(x, y) =
1

2
[ϕ0(x)ϕ0(y)− ϕ0(x)ϕ1(y)− ϕ1(x)ϕ0(y) + ϕ1(x)ϕ1(y)] (34)

=
1√
2
[ϕ0(x)− ϕ1(x)]

1√
2
[ϕ0(y)− ϕ1(y)] (35)

(iv) Ψ(x, y) = 1
2
[ϕ0(x)ϕ0(y)− ϕ0(x)ϕ1(y) + ϕ1(x)ϕ0(y) + ϕ1(x)ϕ1(y)]

This is an entangled state since it cannot be expressed as a product of two single-
particle states.

(v) |Ψ ⟩ = | s = 1;ms = −1 ⟩ ⊗ | s = 1;ms = +1 ⟩ (two different spin-1 particles)
This is a separable state since it can be expressed as a product of two single-
particle states.

(vi)

|Ψ ⟩ = 1

2

[
| s = 1;ms = −1 ⟩ ⊗ | s = 1;ms = −1 ⟩

+ | s = 1;ms = +1 ⟩ ⊗ | s = 1;ms = −1 ⟩

+ | s = 1;ms = −1 ⟩ ⊗ | s = 1;ms = 0 ⟩

+ | s = 1;ms = +1 ⟩ ⊗ | s = 1;ms = +1 ⟩
]

(36)
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This is an entangled state since it cannot be expressed as a product of two single-
particle states.

(b) Give another 2 examples of entangled and 2 examples of separable states involving
three particles and discuss [2 pts].
Solution:

(a) Examples of entangled states

i. |Ψ ⟩ = 1√
2
(| ↑↓↓ ⟩+ | ↓↑↑ ⟩)

ii. |Ψ ⟩ = 1√
3
(| 001 ⟩+ | 010 ⟩+ | 100 ⟩

(b) Examples of separable states

i. |Ψ ⟩ = | ↑ ⟩ ⊗
(

1√
2
(| ↑ ⟩+ | ↓ ⟩)

)
⊗
(

1√
2
(| ↑ ⟩ − | ↓ ⟩)

)
= 1

2
(| ↑↑↑ ⟩ − | ↑↑↓ ⟩ +

| ↑↓↑ ⟩ − | ↑↓↓ ⟩)
ii. Ψ(x, y) = N sin(x) sin(y) sin z

(c) Einstein-Podolsky-Rosen correlations: Consider the entangled state for two spin-1/2
particles: |Ψ ⟩ = (| ↑↓ ⟩ − | ↓↑ ⟩)/

√
2. Show that the correlation of the spin projection

onto axis a for particle one, with that onto axis b for particle two is:

⟨(a · Ŝ(1))(b · Ŝ(2))⟩ = −ℏ2

4
a · b, (37)

where Ŝ(k) is the spin-operator for particle k. [5pts]
Solution: Let us first expand the dot products

(a · Ŝ(1))(b · Ŝ(2)) = (axŜ
(1)
x + ayŜ

(1)
y + azŜ

(1)
z )(bxŜ

(2)
x + byŜ

(2)
y + bzŜ

(2)
z ) (38)

= axbxŜ
(1)
x Ŝ(2)

x + axbyŜ
(1)
x Ŝ(2)

y + axbzŜ
(1)
x Ŝ(2)

z

+ aybxŜ
(1)
y Ŝ(2)

x + aybyŜ
(1)
y Ŝ(2)

y + aybzŜ
(1)
y Ŝ(2)

z

+ azbxŜ
(1)
z Ŝ(2)

x + azbyŜ
(1)
z Ŝ(2)

y + azbzŜ
(1)
z Ŝ(2)

z (39)

It is convenient to handle the computations here using the matrix representations for
spin operators and spin states as given in Eq. (4.107) and Eq. (4.111) from the
Griffiths Book[GR]. The entangled state written in matrix representation reads:

|Ψ ⟩ = 1√
2

((
1
0

)
⊗
(
0
1

)
−
(
0
1

)
⊗
(
1
0

))
(40)
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Let us find the action of each spin operator on the state |Ψ ⟩ in matrix representation:

Ŝ(1)
x |Ψ ⟩ = ℏ

2
√
2

((
0
1

)
⊗
(
0
1

)
−
(
1
0

)
⊗
(
1
0

))
(41)

Ŝ(2)
x |Ψ ⟩ = ℏ

2
√
2

((
1
0

)
⊗
(
1
0

)
−
(
0
1

)
⊗
(
0
1

))
(42)

Ŝ(1)
y |Ψ ⟩ = iℏ

2
√
2

((
0
1

)
⊗
(
0
1

)
+

(
1
0

)
⊗
(
1
0

))
(43)

Ŝ(2)
y |Ψ ⟩ = −iℏ

2
√
2

((
1
0

)
⊗
(
1
0

)
+

(
0
1

)
⊗
(
0
1

))
(44)

Ŝ(1)
z |Ψ ⟩ = ℏ

2
√
2

((
1
0

)
⊗
(
0
1

)
+

(
0
1

)
⊗
(
1
0

))
(45)

Ŝ(2)
z |Ψ ⟩ = −ℏ

2
√
2

((
1
0

)
⊗
(
0
1

)
+

(
0
1

)
⊗
(
1
0

))
(46)

Now the correlation for a typical term for example in Eq. (39) can be written as:

⟨Ŝ(1)
x Ŝ(2)

x ⟩ = ⟨Ψ|Ŝ(1)
x Ŝ(2)

x |Ψ⟩ (47)

= (⟨Ψ|Ŝ(1)
x )(Ŝ(2)

x |Ψ⟩) (48)

= (Ŝ(1)
x |Ψ⟩)†(Ŝ(2)

x |Ψ⟩) (49)

= −ℏ2

8

((
0 1

)
⊗
(
0 1

)
−
(
1 0

)
⊗
(
1 0

))((1
0

)
⊗
(
1
0

)
−
(
0
1

)
⊗
(
0
1

))
(50)

= −ℏ2

8

{(
0 1

)(1
0

)
︸ ︷︷ ︸

=0

×
(
0 1

)(1
0

)
︸ ︷︷ ︸

=0

−
(
0 1

)(0
1

)
︸ ︷︷ ︸

=1

×
(
0 1

)(0
1

)
︸ ︷︷ ︸

=1

(51)

−
(
1 0

)(1
0

)
︸ ︷︷ ︸

=1

⊗
(
1 0

)(1
0

)
︸ ︷︷ ︸

=1

+
(
1 0

)(0
1

)
︸ ︷︷ ︸

=0

×
(
1 0

)(0
1

)
︸ ︷︷ ︸

=0

}
= −ℏ2

4

(52)

Similarly we can evaluate all other pieces in Eq. (39)

⟨(a · Ŝ(1))(b · Ŝ(2))⟩ = −ℏ2

4
a · b (53)

(d) (Bonus) Read and understand the proof of Bell’s theorem in Griffith (page 446), that
shows that Eq. (37) cannot be explained by a classical local hidden variable theory.
Solution: See Griffith
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(3) (Pseudo) Spin-1/2 particle [10pts]: Let the Hamiltonian of a spin-1/2 particle
(or any other two-level system that we can map onto a pseudo spin-1/2) be:

Ĥ = κσy + E(σz + 1), (54)

where σk are Pauli matrices.

(a) Write the most general time-dependent state and then the TDSE in terms of its
coefficients. [2pts]
Solution: The most general time-dependent state can be written as:

|Ψ(t)⟩ = a(t)

(
1
0

)
+ b(t)

(
0
1

)
(55)

The TDSE for |Ψ(t)⟩ is then given by:

iℏ
∂|Ψ(t)⟩

∂t
= Ĥ|Ψ(t)⟩ (56)

Substituting the most general expression for time dependent wavefunction Eq. (55) in
the TDSE Eq. (56) and using the Pauli matrices we get:

iℏ
da(t)

dt

(
1
0

)
+ iℏ

db(t)

dt

(
0
1

)
= κa(t)

(
0 −i
i 0

)(
1
0

)
+ κb(t)

(
0 −i
i 0

)(
0
1

)
+ Ea(t)

(
2 0
0 0

)(
1
0

)
+ Eb(t)

(
2 0
0 0

)(
0
1

)
(57)

= (2Ea(t)− iκb(t))

(
1
0

)
+ iκa(t)

(
0
1

)
(58)

This gives us a set of two coupled differential equations:

iℏ
da(t)

dt
= 2Ea(t)− iκb(t) (59)

iℏ
db(t)

dt
= iκa(t) (60)

(b) Solve the TDSE for the initial state |Ψ(0) ⟩ = | ↑ ⟩. You may use mathematica. [5
pts]
Solution: The initial state can be expressed as the following initial condition for the
coupled differential equations Eq. (59) and Eq. (60):

a(0) = 1 b(0) = 0 (61)

Solving the above differential equation using Mathematica gives:

a(t) = e−
iEt
ℏ

(
cos

(
γt

ℏ

)
+

E sin
(
γt
ℏ

)
iγ

)
(62)

b(t) =
κe−

iEt
ℏ sin

(
γt
ℏ

)
γ

(63)

where γ =
√
E2 + κ2
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(c) Make drawings or plots of the probability to be in state | ↓ ⟩ as a function of time, for
E = 0, E ≈ κ and E ≫ κ, discuss your results. [3pts]

Solution: The probability of finding the state in | ↓ ⟩ is |b(t)|2 = b∗(t)b(t) =
κ2 sin2( γt

ℏ )
γ2

(a) ∆E = 0
The probability to find the state in | ↓ ⟩ from Eq. (63) is

|b(t)|2 =
(
sin

(
tκ

ℏ

))2

(64)

where κ sets the oscillation frequency which makes sense as it is the coefficient
of the operator σy that evolves | ↑⟩ to | ↓⟩ and vice-versa.

Figure 3: |b|2 v/s t for the case E = 0. (κℏ taken to be unity for simplicity)

(b) E = κ
The probability to find the state in | ↓ ⟩ from Eq. (63) is

|b(t)|2 =
sin2(

√
2κt
ℏ )

2
(65)
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Figure 4: |b|2 v/s t for the case E = κ. (again κ
ℏ is taken to be unity for simplicity)

(c) E >> κ
The probability to find the state in | ↓ ⟩ from Eq. (63) is

|b(t)|2 =
κ2 sin2

(
Et
ℏ

)
E2

(66)

Note that since sin2
(
Et
ℏ

)
is bounded by 1, for E >> κ, |b(t)|2 will always stay

negligibly small. This makes sense since for a very large E compared to κ the
first term in the Hamiltonian that causes evolution from up spin state to down
can be neglected.

Figure 5: |b|2 v/s t for the case E >> κ.(plotted for κ
E

= 10−2 and the plot line made
thick to show that it’s non-zero but very small; of the order of 10−4)
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