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PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

9 Quantum dynamics

So far we have encountered only two approaches to time-dependence (=“dynamics”) in quantum
mechanics: (i) If the Hamiltonian itself is time-independent, we had already seen in Eq. (1.70) that
once we solve the TISE (1.62), we actually also know the time dependence of the wavefunction and
hence all physical observables. (ii) In a few examples such as example 1 and example 21, we had
seen some brute force numerical solution of the TDSE (3.8), also for cases where the Hamiltonian
is time-dependent.

We now attempt to understand di↵erent types of quantum dynamics also analytically from Eq. (3.8),
for more insight than the computer can provide, and for case where numerical approaches are not
practical or not powerful enough.

9.1 First order time-dependent perturbation theory

Further reading: For this section (Time-dependent perturbation theory), please also refer
to Shankar, section 18 (SH)

Suppose our Hamiltonian is

Ĥ = Ĥ(0) + Ĥ 0(t), (9.1)

where the unperturbed Hamiltonian Ĥ(0) does not depend on time and we assume we know all

eigenstates and energies from Ĥ(0)|�(0)
n i = E(0)|�(0)

n i. The perturbation Ĥ 0(t) is somehow “small”
and time-dependent. This is thus the same starting point as (7.1), except that we made the
perturbation time-dependent (and skipped the placeholder � used earlier to indicate “smallness”).

If there was no perturbation, we can use (1.70) as in point (i) above to write the solution of the
TISE as:

| (0)(t) i =
X

n

cn(0)e
�iE

(0)
n t/~

| {z }
cn(t)(0)

|�(0)
n i. (9.2)
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Note, that in this, the probability pk for the system to be found with energy E(0)
k upon a measure-

ment remains constant:

pk = |cn(t)(0)|2 = |cn(0)e�iE
(0)
n t/~|�(0)

n i|2 = |cn(0)|2. (9.3)

We say that the system cannot make a transition between two energy eigenstates n and n0. We
will now see that this does not remain true, once we switch on the perturbation (see e.g. example
21).

9.1.1 Transition amplitudes

While Eq. (9.2) requires in an essential way that the Hamiltonian does not depend on time, even
if the total Hamiltonian is time-dependent, we can still use the eigenstates of the unperturbed and
time-independent Hamiltonian as a basis at each moment t in time, and thus write the total state
as

| (t) i =
X

n

c̃n(t)|�(0)
n i, (9.4)

where the coe�cients c̃n(t) are now not equal to the c̃n(t)(0) above. A typical mission statement
for perturbation theory is now the following: Suppose the system is in some initial state i at the

beginning: | (0) i = |�(0)
i i (hence cn(0) = �ni), what is the probability that it makes a transition

to some final state f by the time t? This probability is given by |h�(0)
f | (t) i|2 = |c̃f (t)|2.

To find c̃(t), let us be guided by the fact that they become the cn(t)(0) if Ĥ 0 = 0 and write

| (t) i =
X

n

dn(t)e
�iE

(0)
n t/~|�(0)

n i, (9.5)

instead of (9.4) (this just defines some new coe�cients dn(t) instead of c̃n(t). We now insert (9.5)
into the TDSE (3.8) to reach

i~ d

dt

"
X

n

dn(t)e
�iE

(0)
n t/~|�(0)

n i
#
=

⇣
Ĥ(0) + Ĥ 0(t)

⌘"
X

n

dn(t)e
�iE

(0)
n t/~|�(0)

n i
#
,

i~
X

n

"
ḋn(t)e

�iE
(0)
n t/~ � iE(0)

n t

~ dn(t)e
�iE

(0)
n t/~

#
|�(0)

n i =
X

n

dn(t)e
�iE

(0)
n t/~ Ĥ(0)|�(0)

n i| {z }
=E

(0)
n |�

(0)
n i

�

+
X

n

dn(t)e
�iE

(0)
n t/~Ĥ 0(t)|�(0)

n i. (9.6)

We now take the scalar product with h�(0)
f | since we are interested in c̃f (t) (and hence df (t)):

i~

2

4ḋf (t)e�iE
(0)
f

t/~ �
iE(0)

f t

~ df (t)e
�iE

(0)
f

t/~

3

5 = df (t)e
�iE

(0)
f

t/~E(0)
f +

X

n

dn(t)e
�iE

(0)
n t/~h�(0)

f |Ĥ 0(t)|�(0)
n i.

(9.7)
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The second term on the left and first term on the right cancel, and the rest can be divided by some
clutter to reach:

ḋf (t) = � i

~
X

n

dn(t)e
i(E

(0)
f

�E
(0)
n )t/~h�(0)

f |Ĥ 0(t)|�(0)
n i. (9.8)

So far, we have not made any approximations. Now we apply perturbation theory.
Zeroth order: To zeroth order we neglect everything involving Ĥ 0(t), thus (9.8) becomes ḋf (t) = 0,
implying df (t) = df (0) = cf (0) = �if . The last step is because we started by saying the system is
in the initial state i.
First order: Since the right hand side is already of order Ĥ 0, if we want to find the LHS to first
order in Ĥ 0, the coe�cient dn(t) can only contain the zeroth order result, hence:

ḋf (t) = � i

~
X

n

�nie
i(E

(0)
f

�E
(0)
n )t/~h�(0)

f |Ĥ 0(t)|�(0)
n i = � i

~e
i(E

(0)
f

�E
(0)
i

)t/~h�(0)
f |Ĥ 0(t)|�(0)

i i, (9.9)

which we can formally solve with initial condition df (0) = �fi to find the

Transition amplitude between two states in first order time-dependent perturbation
theory as

df (t) = �fi �
i

~

Z t

0
dt0 ei(E

(0)
f

�E
(0)
i

)t0/~h�(0)
f |Ĥ 0(t0)|�(0)

i i (9.10)

with transition probability pf (t) = |df (t)|2

• A key role is clearly played by the matrix element (t) = h�(0)
f |Ĥ 0(t0)|�(0)

i i of the perturbation
between the initial and final states. We had already alluded to this a few times earlier.

• The second main contribution is an oscillating factor depending on the energy di↵erence

�E = E(0)
f � E(0)

i between the initial and final states. This can interplay with any time-
dependence in (t) and will be responsible for resonance features as we shall see shortly.

• We will stop at first order here, but see a more systematic approach for generalisation to
higher orders in section 9.4.

Example 70, Kicked harmonic oscillator: (also see Shankar page 476). Consider a
harmonic oscillator (section 2.3), which is in its ground-state |�0 i at t = �1 and then
subject to a time-dependent perturbation

Ĥ 0(t) = �Fx̂e�t2/⌧2 . (9.11)

We had seen the perturbation without time-dependence in example 55, and hence know that
(9.11) describes the application of a short kick by a homogeneous force near time t = 0 of
duration ⇠ ⌧ . What is the probability that this kick has excited the oscillator into state
|�n i by time t = 1?
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Example continued: To first order perturbation theory, we know from Eq. (9.10) that
for n > 0

dn(1) = +
i

~F
Z

1

�1

dt0 ein!t
0h�n |x̂|�0 ie�t02/⌧2 . (9.12)

We can evaluate h�n |x̂|�0 i =
p
~/(2m!) using x̂ = (ˆ̄a + ˆ̄a†)

p
~/(2m!), thus at most

excitation into state n = 1 in possible to this order of perturbation theory. The remaining
integral over time t0 can be solved by mathematica or with techniques as in section 2.6 and
we reach a transition probability

P = |d1(1)|2 = +
F 2⇡⌧2

2m!~ e�!2⌧2/4. (9.13)

This has lots of reasonable properties: It increases for stronger or longer kicks, and reduces
for higher oscillator frequencies (larger energy di↵erence between states 0 and 1). We will
revisit the result shortly.

Eq. (9.10) works for any time-dependence of the perturbation, but we might not be able to find a
nice closed form solution for all time-dependences. Now let’s look at three extreme cases for the
time-dependence of the perturbation, in the following three subsections. For all of these we later
also go beyond perturbation theory, in section 9.2 and section 9.3.

9.1.2 Sudden perturbation

Consider a finite perturbation, starting at t = 0 (hence Ĥ 0(t) = 0 for t < 0) and changing the
Hamiltonian to Ĥf within some very short (infinitesimal) time t✏. It is clear that at the early time
t✏ the transition probability to any other state than i vanishes, since

lim
t✏!0

df (t✏) = lim
t✏!0

� i

~

Z t✏

0
dt0 ei(E

(0)
f

�E
(0)
i

)t0/~h�(0)
f |Ĥ 0(t0)|�(0)

i i = 0. (9.14)

Thus immediately after the transition, the state has remained the same as before. The quantum
system “needs some time to respond to the perturbation”. We will see in section 9.2.1 that this is
true also beyond perturbation theory.

Similarly, if we look at example 70 and consider the limit ⌧ ! 0 of a very short, sudden kick given
the harmonic oscillator, the transition probability Eq. (9.13) vanishes.

9.1.3 Adiabatic perturbation

Now let’s look at the opposite limit, namely a very slow change of the Hamiltonian. We will
illustrate this with the
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Example 71, Adiabatic change of a two-level system: Consider any two-level system,
that we can thus consider as a pseudo spin-1/2 (see section 4.7.4), with Hamiltonian:

Ĥ = �| " ih " || {z }
=Ĥ(0)

+(t)
�
| " ih # |+ | # ih " |

�
| {z }

=Ĥ0(t)

(9.15)

or in matrix form

H =

✓
0 (t)

(t) �

◆
. (9.16)

where the coupling between the two states changes linearly from zero to a final value 0 over
the time interval T :

(t) =

8
<

:

0 for t < 0,
0

t
T for 0 < t < T,
0 for T < t.

(9.17)

Suppose we start in | # i. According to (9.10) the transition amplitude into | " i is d"(t) =

� i
~
R t
0 dt

0 ei�t0/~(t) and hence

d"(T ) = � i

~

Z T

0
dt0 ei�t0/~ t

T
=

i~(1� ei�T/~)� �Tei�T/~

�2T
T!1! � 

�
ei�T/~ (9.18)

Now we can also find the perturbed eigenstate of the Hamiltonian at t > T using time-
independent perturbation theory with Eq. (7.21) and find

|�1 i = | # i � 

�
| " i (9.19)

We have thus seen in the context of perturbation theory, that for a very slow (we say
adiabatic) change of the Hamiltonian, a quantum state in an eigenstate of the Hamiltonian
before the change, ends up in the corresponding eigenstate after the change (up to a phase
factor).

Again we will see in section 9.2.2 that this result is also true beyond perturbation theory.

9.1.4 Periodic perturbation

Finally, let us assume the perturbation is sinusoidal

Ĥ 0(t) = V̂ cos(!t), (9.20)
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with V̂ an arbitrary “small” but time-independent operator. Application of (9.10) with f 6= i and

defining the transition frequency !fi = (E(0)
f � E(0)

i )/~ gives

df (t) = � i

~ h�(0)
f |V̂ |�(0)

i i
| {z }

⌘Vfi

Z t

0
dt0 ei!fit0 cos(!t0) = �

iVfi

2~

Z t

0
dt0 [ei(!fi+!)t0 + ei(!fi�!)t0 ]

= �
Vfi

2~

"
ei(!fi+!)t � 1

!fi + !
+

ei(!fi�!)t � 1

!fi � !

#
. (9.21)

Let us now further assume !fi > 0 and that the frequency of the perturbation is near resonant
(but not exactly resonant) with the transition frequency, such that

!fi + ! � |!fi � !|, (9.22)

which means we can discard the first term in (9.21) due to the denominator, and reform the rest as

df (t) = �
Vfi

2~
ei(!fi�!)t/2

!fi � !

h
ei(!fi�!)t/2 � e�i(!fi�!)t/2

i
= �i

Vfi

~
ei(!fi�!)t/2

!fi � !
sin [(!fi � !)t/2]].

(9.23)

Finally taking the mod square Pf (t) = |df (t)|2, we have the

Transition probability from a periodic perturbation to first order time-dependent
perturbation theory as:

Pf (t) =
|Vfi|2

~2|!fi � !|2 sin
2


(!fi � !)

t

2

�
]. (9.24)

• The transition probability remains a function of time and in fact oscillates between a small
21 value Pmax = |Vfi|2/(~2|!fi � !|2) and zero. Thus while initially the system might be

excited from i to f , it can also again become de-excited!

top: Transition probability (9.24) as a function of time (left) and
perturbation frequency (right)

21If it was not small, we would not have been justified to use perturbation theory.
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• The period of these oscillations in the excitation probability is controlled by the detuning
� = !fi � ! of the perturbation from the resonance frequency.

• The closer we are to resonance (the smaller �), the larger the maximum probability to make
the transition from i to f . However we have to be careful here, that once Pmax becomes too
large, perturbation theory ceases to be valid. We shall see the corresponding non-perturbative
result in section 9.3.5 and show that even Pf (t) = 1 can be reached.

• We can also look at the dependence of Pf (t) on ! at fixed t, which is also drawn above. This
function is called a “sinc function” (sin(x)/x). We can see by the indicated width and height
of the main peak, that it converges against a delta-function as t ! 0.

For an example please be patient for section 9.3, which is an entire “example section” for this result.

9.2 Extreme time dependences beyond perturbation theory

The applications of perturbation theory in the subsections of section 9.1 contained quite extreme
time-dependences (extremely fast, extremely slow, and perfectly periodic). It turns out the first
two are nices cases that we can also understand going completely beyond perturbation theory,
i.e. considering the complete time dependence due to the TDSE (3.8) without any need for small
changes.

9.2.1 Sudden quench of the Hamiltonian

Let us assume the Hamiltonian changes very suddenly, at time t = 0, within a very short time
interval ⌧✏ from Ĥ(t = 0) = Ĥ(i) to Ĥ(t = ⌧✏) = Ĥ(f). This is also referred to as a quench of the

Hamiltonian. Our discussion in section 9.1.2 was a special case of this, where the change from Ĥ(i)

to Ĥ(f) was not only fast but also “small”. In this section, we will drop the requirement for it to
be small, but the change should remain finite.

Suppose the quantum system was in some arbitrary state | 0 i initially. Here we can tell without
perturbation theory, what will be the state immediately after the change, at ⌧✏. Revisit section 3.9
on time evolution. Instead of (3.58), since the Hamiltonian is time-dependent, we have to write:

| (t) i = e�i
R
t

0
Ĥ(t0)

~ dt0 | (0) i = Û(t, 0)| (0) i. (9.25)

Using this, we know that

| (⌧✏) i = e�i
R
⌧✏

0
Ĥ(t0)

~ dt0 | (0) i, (9.26)

For an infinitesimal ⌧✏ the integral vanishes since the integrand is finite, and | (⌧✏) i = | 0 i. This
is nothing new, also in classical mechanics no physical system would respond to a perturbation
instantaneously, but always responds delayed with some inertia.

Of course, in reality, a Hamiltonian will never change instantaneously. The sudden approximation
will be appropriate if the change happens within a duration ⌧ such that ⌧ ⌧ 2⇡

!n�!m
, with !n = En/~

the natural frequencies of the initial Hamiltonian.
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