
Week 7
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

8.3.3 Scattering phase shifts

In the discussion so far, each partial wave amplitudes was one complex number. It turns out, we
can use physical insight to reduce the required information further, into one real phase shift.

First consider the example sketched below, where we return to 1D scattering for simplicity, and
probe a potential V (x) bordered by a hard wall. The hard wall makes sure that the impinging
quantum wave will be reflected with probability 1. However we can still learn something about the
potential, if we can record the phase shift of the outgoing wave, compared to the case of V (x) (just
reflection o↵ the hard wall).

left: Without any potential prior to the
hard wall, we just have a scattering wave-
function �(x) = N (eikx � e�ikx, stating that
wavenumber must be k =

p
2mE/~ and we

require �(x = 0) = 0 due to the hard wall
boundary condition. With the potential, we
still require the same boundary condition,
and due to probability conservation the am-
plitudes of the incoming part (⇠ eikx) and
outgoing part (⇠ e�ikx) must be equal.

However in this case the wavelength of the incoming and outgoing waves varies nontrivially where
V (x) 6= 0 (we could e.g. attempt to understand or calculate that wavelength using the WKB ap-
proximation in section 7.6). Because of that, the final outgoing wave will have a phase-shift �
(only), compared to the case without potential.

While it is less obvious, it turns out that also in 3D scattering, once we write the partial wave
expansion, each partial wave can only su↵er a phase-shift due to the potential V (x), compared to
no potential V (x) = 0 , but not be reduced in its amplitude. This is due to angular momentum
conservation, enforced by the TISE for

⇥
Ĥ, L̂

⇤
= 0 and thus already included in all our discussion

so far.

Then identify the phase shift we write both scenarios as superpositions of spherical waves in the
far field (large r).
Without scatterer, V (x) = 0: In this case the incoming wavefunction eikz is unchanged, and we can
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start from Rayleigh’s formula (8.13) which for large r can be written as

N eikz = N
1X

`=0

i`(2`+ 1)j`(kr)P`(cos ✓)
large r

⇡ N 2`+ 1

2ikr

⇣
eikr � (�1)`e�ikr

⌘
P`(cos ✓), (8.27)

With scatterer, V (x) 6= 0: we instead start from (8.23) and do the same expansion of special
functions to find

�(r, ✓,') = N
 

1X

`=0

i`(2`+ 1)
h
j`(kr) + ika`h

(1)(kr)
i
P`(cos ✓)

!

large r
⇡ N


2`+ 1

2ikr

⇣
eikr � (�1)`e�ikr

⌘
+

2`+ 1

r
a`e

ikr

�
P`(cos ✓), (8.28)

We want to write this as

�(r, ✓,') ⇡ N 2`+ 1

2ikr

⇣
ei(kr+2�`) � (�1)`e�ikr

⌘
P`(cos ✓), (8.29)

where �` controls the relative phase shift of the outgoing wave part compared to (8.27). Through
direct comparison of (8.28) and (8.29), we read o↵ that the

Partial wave scattering phase shifts �`, are related to partial wave amplitudes a` via

a` =
1

2ik

⇣
e2i�` � 1

⌘
=

1

k
ei�` sin �`. (8.30)

What we have seen, is thus that the scattering process is completely described by the set of all the
real numbers �`, which is simpler than unspecified complex numbers a`.

8.4 Born approximation

For a complementary way of (approximately) solving the TISE for the scattering problem to the
partial wave expansion, we want to first reformulate the TISE in a di↵erent manner.

8.5 Integral form of Schrödinger’s equation and Green’s functions

Starting from the 3D TISE:

� ~2
2m

r2�(r) + V (r)�(r) = E�(r), we can write this as

(r2 + k2)�(r) = Q(r), (8.31)

where we have used the definitions k =
p
2mE/~ and Q(r) = 2mV (r)�(r)/~2. The TISE has now

taken the form of the Helmholtz equation20, with an inhomogenous source term Q(r)�(r) on the

20That is the mathematical name, in physics you have seen this as the wave-equation or di↵usion equation.
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RHS. As is usually done, let us define its solution in the presence of a delta function source first,
for which we use the

Definition of Green’s function of the scattering TISE as G(r) solving

(r2 + k2)G(r) = �(3)(r), (8.32)

• If we know the Green’s function, we can use it to express the solution for the inhomogeneous
equation (8.31) as

�(r) =

Z
d3r 0G(r� r0)Q(r0). (8.33)

Proof: We can see this by simple substitution into (8.31)

(r2 + k2)

Z
d3r 0G(r� r0)Q(r0) =

Z
d3r 0

⇥
(r2 + k2)G(r� r0)

⇤
| {z }

=�(3)(r�r0)

Q(r0) = Q(r) (8.34)

In the first equality we used that we can interchange derivatives wrt to r and an integration
over r0, and in the braces we then applied Eq. (8.33).

To proceed further, we need to actually find the Green’s function, which means solving Eq. (8.33)
for G(r). This calculation requires complex contour integrals (residue theorem, see (2.81)) and is
given in full length in Gri�th. Please go through it there if you did encounter the residue theorem
in your math courses. Otherwise we shall directly jump to the result, which is the

Solution for Green’s function of the scattering TISE as (r = |r|)

G(r) = �eikr

4⇡r
. (8.35)

• In terms of a wave, this function represents an outgoing spherical wave, the denominator 1/r
takes care of intensity conservation (see discussion in section 8.3). This seems an appropriate
response to a delta-function source at the origin.

• This is in fact not a unique solution of (8.32) but a special solution, since we can now add
any solution G0(r) of the homogenous Helmholtz equation (r2 + k2)G0(r). In our quantum
mechanical context, that means any solution  0(r) of the free particle TISE (2.2).

Backtracing our steps so far, we can now write the general solution of Schrödinger’s equation for
the scattering problem (8.31) through the

207



Integral form of Schrödinger’s equation

 (r) =  0(r)�
m

2⇡~2

Z
d3r0

eik|r�r0|

|r� r0| V (r0) (r0). (8.36)

• This looks like a solution for  (r), but it is not, since there also is a  (r0) in the integral.
Really we just rewrote the TISE into a form into which we can insert approximations more
easily shortly.

• Since we are interested in a scattering problem, we shall later use the part  0(r) = eikr to
represent the incoming wave, recall section 8.3.

8.6 The first Born-approximation

As we did in section 8.3 let us again assume the potential has a finite range Rpot, such that
V (r0) ⇡ 0 in the integration (8.36), for |r0| � Rpot. Additionally, we are only interested in the
scattering wavefunction  (r) at some faraway detector, such that we can assume |r| � Rpot. This
means that |r| � |r0| for all non-vanishing contributions to the integral, which allows us to simplify
|r� r0| by writing

|r� r0| =
p
(r� r0)2 =

p
r2 + r02 � 2r · r0 ⇡

s

r2
✓
1� 2

r · r0
r2

◆
= r

✓
1� r · r0

r2

◆
= r � er · r0,

(8.37)

where we have used the Taylor expansion
p
1 + x ⇡ 1 + x/2 for small x, and defined a unit vector

in the radial direction er = r/r.

We now apply this result to the relevant part of the integrand:

eik|r�r0|

|r� r0|
Eq. (8.37)

⇡ eik(r�er·r0)

r
=

eikr�ikf ·r0)

r
=

eikr

r
eikf ·r0 . (8.38)

See Shankar for the reason we could be more brutal in our approximation of the denominator. In
the last step we defined the final wavevector of the scattered particle kf = ker, which has the same

magnitude as the incoming wavevector in  0(r) = eikr, but now point in the direction of the part
of the outgoing wave of interest. With the approximations above and the form of  0, we can write
(8.36) as

 (r) = eikz � m

2⇡~2
eikr

r

Z
d3r0e�ikf ·r0V (r0) (r0). (8.39)

The Born-approximation now amounts to assume the potential V (r0) is “weak enough”, such that
the scattering wavefunction  (r) is not that dramatically changed from the incoming plane wave
eikr, so that we can replace  (r0) ⇡ eikz

0
= eik·r

0
with the incoming wavevector kin = kez in the

integral. We will see in section 8.48 a somewhat more formal approach to this.
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After that replacement we are getting somewhere, because the integral no longer contains the
unknown function  (r0). We also see that the second term depends like eikr

r on r, thus comparing

(8.39) after  (r0) ! eik·r
0
with (8.8), we can extract the

Scattering amplitude in the Born-approximation as

f(✓,') = � m

2⇡~2

Z
d3r0ei(kin�kf )·r0V (r0). (8.40)

• We recognize the RHS as related to the 3D Fourier transform of the potential, see (2.74).

• The dependence on angles ✓, ' on the RHS is somewhat hidden: Recall that kf = ker, and
the unit vector er does depend on those angles, see Eq. (4.30).

• The argument of the Fourier-transform ~(kin�kf ) is the momentum transfer onto the target.

Example 66, Yukawa scattering: Let’s take as the scattering potential the
Yukawa potential

V (r) = V0
e��r

r
, (8.41)

which provides for example a useful approximation for the interactions of nucleons mediated
by pi-mesons.
Assuming the Born approximations is valid, we can calculate the scattering amplitude as

f(✓,') = �mV0

2⇡~2

Z
d3r0ei(kin�kf )·r0

e��|r0|

|r0| , (8.42)

Since q = kin � kf is just a constant vector during the integration, we chose spherical polar
coordinates for r0, with z-axis parallel to q, then

f(✓) = �mV0

~2

Z
1

0
dr0 r02

e��r0

r0

Z ⇡

0
d✓ sin ✓ eiqr

0 cos ✓

| {z }
=[�eqr0 cos ✓/(iqr0)]⇡0

,

= �2mV0

q~2

Z
1

0
dr0e��r0 1

2i

⇣
eiqr

0 � e�iqr0
⌘

| {z }
=q/(q2+�2)

=
2mV0

~2(q2 + �2)
. (8.43)

The di↵erential cross section is d�/d⌦ = |f(✓)|2, it depends on ✓ via q2 = 2k2(1 � cos ✓) =
2k2 = 4k2 sin2 (✓/2). For k ⌧ � (low energy scattering), it thus becomes isotropic as it has
to (see example 65). For high-energy scattering k � �, the cross section goes like sin�4(✓/2),
such that forward scattering is much more likely than backwards scattering. Also the total
cross sections keeps decreasing with energy as E�2 in this case.
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Example 67, S-wave scattering of ultracold atoms II: In example 65 we had seen that
very low energy scattering between atoms is governed by just one single real number, the
s-wave scattering length as. In the Born-approximation we just learnt that the scattering
amplitude is given by (8.40). For � = 2⇡/k � Rpot, we can ignore the exponential factor in
the region where the potential is nonzero, and reach.

f = � m

2⇡~2

Z
d3r0V (r0). (8.44)

This contains almost no details of the shape of the potential. We can thus replace the latter
by a pseudo potential V (r) = V0�(3)(r), insert this into (8.44) and use f = �as from example
65.
Further recall that our discussion so far assumes an infinitely heavy target, but can be
adapted to two equal mass scattering partners by replacing the mass by the reduced mass
m ! µ = m/2 everywhere.
We now see that a pseudo potential strength

V0 =
4⇡~2as

m
, (8.45)

will give rise to exactly the same low energy scattering behaviour as the real finite range
potential, but is theoretically much easier to handle.

8.7 Born series

The Born approximation in the previous section is just the first step of a more systematic expansion.
Let us rewrite Eq. (8.36) as

 (r) =  0(r) +

Z
d3r0g(r� r0)V (r0) (r0). (8.46)

using the shortcut g(r� r0) = � m
2⇡~2

eik|r�r0|

|r�r0| and then schematically (dropping all dependencies), as

 =  0+
R
gV . We can now just insert this equation itself for  on the right hand side, to reach

 =  0 +

Z
gV ( 0 +

Z
gV ) =  0 +

Z
gV 0 +

Z Z
gV gV . (8.47)

Doing this repeatedly provides the

Born series

 =  0 +

Z
gV 0 +

Z Z
gV gV 0 ++

Z Z Z
gV gV gV 0 + · · · (8.48)

• This iterative expansion method is known in the mathematics of solving di↵erential equations
(converted to an integral equation) as Picard iteration. It is helpful whenever there is reason
to believe that only a few iterations are needed.
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• Since this requires some smallness of V (r0), this amounts to perturbation theory applied to
the scattering problem. Our earlier result (8.40) represents the first order in this expansion.

• One can associate an intuitive interpretation with the series, that we attempt to sketch below,
following Gri�th:

left: Drawing correspond term by term to (8.48).
 0 represents unperturbed propagation of the in-
coming particle. It then can receive a localized
kick from the potential V at some point, and af-
terwards propagate out via the propagator g. The
actual wavefunction will be the sum of all orders
and within each all possible locations of the kick
and subsequent propagation directions.

In a more complicated context, diagrams like the above have become very common for both, com-
munication between physicists and an actual first step for complex quantum scattering calculations:

Example 68, Feynman diagrams: You may have seen on occasion a drawing like the
one below in a particle physics context

left: Feynman diagram for electron-
positron annihilation with one virtual W-
Boson loop and quark-anti-quark pair
production as final state. Also here, lines
represent propagators (like g in our Born
series, but now di↵erent ones for di↵erent
particles), and dots/vertices interaction
potentials V (which depend on the type
of interaction, here electro-magnetic).

These are called Feynman diagrams. Essentially the lines represent g in (8.48) and
are called propagator, the line-style tells you which particle is propagating. Nodes V are
called vertices, and represent certain interactions (potentials), like V in (8.48). Unlike
what we have done, for particle physics the entire formalism has to be relativistic, thus
interactions typically are capable of converting di↵erent types of particles into each other.
The open legs of the diagram are the incoming and outgoing particles of the scattering event
in the collider. More in courses on nuclear/particle physics or quantum field theory.

8.8 Outlook

We have but scratched the surface of quantum scattering theory, as already evident from the
previous example. Whenever you collide microscopic particles with one another, the kinematics of
the scattering process will give you insight into their properties, even if they themselves are way
too small to see. You had seen an example in PHY106 (Rutherford scattering), or example 64,
where the total cross section contained information on the size of the hard-sphere.
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Even when non-relativistic, these scattering processes typically depend on the spin. We then see
the concept of multi-channel scattering [e.g. channel=di↵erent spin states of the outgoing particles].
Already when doing chemistry, the scattering particles can change their character. I.e. a chemical
reaction is a quantum scattering process, whereby two molecules (see section 7.5.2) collide, to form
a new molecule (channel). Once we go to relativistic energies, even fundamental (non-compound)
particles can be created, destroyed and converted, thanks to E = mc2.

Example 69, Scattering event at the Large Hadron Collider (LHC): Much of
what we know about the fundamental workings of the universe has been unravelled with
the help of quantum scattering theory. The image below represents one measurement of a
proton-anti-proton heads on collisions at the LHC (take from the CERN webpage).

left: The p-p̄ collide at the centre and
produce a large set of collision fragments.
Their trajectories are tracked as yellow
lines (i.e. ✓, ' in our discussion). Un-
like our discussion, there are lots of di↵er-
ent final states which hence can all have
di↵erent energies (displayed in the orange
green and blue bar diagrams).

By averaging over many such events, one tries to deduce cross sections d�/d⌦, and by
comparing those with theoretical calculations gains some inside, for example into yet
undiscoverd particles within virtual loops as shown in example 68. We had only looked
at elastic scattering of identical particles, fully described by ✓, '. In contast for inelastic
events such as the one above, there are many more variables describing it, such as energies
Ek, final state charges qk, final state spins etc,
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