
Week 6
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

8 Quantum scattering theory

We had seen our first 1D example of quantum scattering with the square barrier problem in sec-
tion 2.2.4. There the scattering had only two possible outcomes, transmission or reflection, which
we could study as a function of only one parameter, the energy of the incoming particle. Most
real life scattering events happen in 3D, we thus get a continuous range of outcomes namely two
scattering angles ✓, ', as discussed shortly. We can also vary at least one more property of the
incoming particle, the impact parameter.

8.1 Classical scattering theory

All concepts just mentioned are not special to quantum scattering theory, so we first briefly discuss
(or review) scattering in classical mechanics.

The basic problem of scattering theory is sketched below. A projectile P is impacting on a tar-
get T with impact parameter b. The impact parameter is the distance to a straight line directly
hitting the target. Typically the problem is azimuthally symmetric, independent of �. The task
is then to calculate the scattering angle ✓ (the deflection angle of the projectile from its incoming
direction), as a function of the impact parameter and the energy (or momentum) of the incoming
particle. This deflection will be due to some interaction between projectile and target, which in the
sketch we have drawn as a long ranged, repulsive interaction, but the problem statement covers all
interaction.

left: Geometry of a scattering event.
We define the z-axis as going through
the target and then parallel to the mo-
mentum of the projectile. Since the pro-
jectile might not move head-on towards
the target, we o↵set its initial trajec-
tory (violet) by the impact parameter
b. We also sketch the angles ✓, � of the
outgoing trajectory, in a spherical polar
coordinate system centered on the tar-
get. The areas d� and d⌦ (violet) are
discussed further below.
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By solving Newton’s equation, we can predict ✓ for all possible incoming impact parameters and
angles �. Assuming the typical case where the interaction potential V (|xP �xT |) between projectile
and target only depends on their separation r = |xP �xT |, the problem is clearly azimuthally sym-
metric and the answer will not depend on �. Let us define that all particles coming in through an
(infinitesimal) cross sectional area d�, will be scattered into a solid angle d⌦ = d✓d� (to be deter-
mined). We define the constant of proportionality D(✓) between the two as di↵erential scattering
cross-section

d� = D(✓)d⌦. (8.1)

Essentially it tells us “how likely a scattering event with deflection angle ✓ will be”. Looking
at the violet shades in the diagram above, we can deduce infinitesimal areas d� = b db d� and
d⌦ = sin ✓ d✓ d�, which results in the following expression for the di↵erential cross section

D(✓) =
d�

d⌦
=

b

sin ✓

����
db

d✓

���� . (8.2)

Let us collect all the quantities we defined above into a red box:

Quantities describing a scattering process For an impact parameter b and
scattering angle ✓ we define a di↵erential scattering cross-section

D(✓) =
d�

d⌦
=

b

sin ✓

����
db

d✓

���� . (8.3)

and from that a total scattering cross-section

� =

Z
d⌦D(✓) (8.4)

• See Eq. (4.49) for the definition of
R
d⌦.

• The total scattering cross section determines which segment of the incoming beam cross
section is going to be deflected by the projectile (for very large b and a finite range of V (r),
this segment typically has a finite size).

It is best to see how all this work, by looking at an example (taken from Gri�th)
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Example 63, Classical scattering o↵ a hard sphere: Imagine a small pebble being
shot at a billiard ball of radius R and elastically reflecting o↵ its surface as shown below.

left: Knowing the impact pararameter b,
we can infer the angle ↵ defined in the
drawing as sin↵ = b/R, and then read o↵
the drawing that the scattering angle is
✓ = ⇡ � 2↵. Thus b = R sin

�
⇡
2 � ✓

2

�
=

R cos ✓ and hence

✓ =

⇢
2 arccos(b/R) for b < R
0 for b � R

(8.5)

To calculate the di↵erential cross-section D(✓), we need db/d✓ = �R sin(✓/2)/2 from
which we can find

D(✓) =
R cos(✓/2)

sin ✓

R sin(✓/2)

2
=

R2

4
, (8.6)

which unusually does not depend on ✓, telling us that all deflections ✓ are equally likely. We
finally can integrate this up to get the total cross section:

� =

Z
d⌦D(✓) =

Z ⇡

0
d✓ sin(✓)

Z 2⇡

0
d�D(✓) = (4⇡)

R2

4
= ⇡R2, (8.7)

which is the cross-sectional area that the billiard ball presents to the incoming beam of
pebbles.

8.2 The quantum scattering problem

In a quantum treatment of scattering, of course we have to replace the fixed positions and momenta
of the scatterer (and target) by matter waves. The corresponding wave scattering picture is shown
below. To have an as well defined scenario as possible, we give up completely on a fixed position
of the projectile prior to collision, but specify its momentum. The projectile is thus coming in as a
3D plane wave eik·r, and we will work with a coordinate system where the z-axis is chosen parallel
to k so that this becomes eikz. The fact that interactions with the target will scatter the projectile
into di↵erent angles, is then taken into account by allowing for a spherically outgoing radial wave,
so that the complete scattering Ansatz becomes

Scattering wavefunction

�(r) ⇡ A

✓
eikz + f(✓)

eikr

r

◆
. (8.8)

This is sketched in the figure below, which also defines the coordinates.

197



left: Scattering wavefunction, com-
posed of an incoming plane wave and
outgoing spherical wave. We are use
a mix of spherical polar coordinates
(r, ✓, '), centered on the target, tand
cartesian coordinates (z). Violet lines
are equal phase fronts. As usual k =p
2mE/~.

• The ⇡ in (8.8) means that the Ansatz is meant only for “large” r, where the projectile has
stopped interacting with the target. We call this the “far-field”. In other words, if there is a
finite range potential V (r), where r = |xproj � xtarg|, we must be outside the range of V (r).

• We are working in the centre-of-mass frame, or perhaps easier to visualize, we assume an
infinitely heavy target.

• We assume V (r) is azimuthally symmetric around the z-axis, thus f is not a function of '.
This might not be the case in more complicated scattering problems involving spins and/or
external fields, that break spherical symmetry of the scattering potential.

• The factor of 1/r in (8.8) already takes into account that the total outgoing probability has
to be conserved. To find the outgoing probability we would have to integrate |�(r)|2 over a
spherical shell, the surface area of which is 4⇡r2, hence that factor of r2 will cancel the one
from that denominator. This way we know that at large distances, f should depend on ✓
only, no longer on r.

Now to connect the scattering wavefunction (8.8) with our earlier definition of the di↵erential cross
section (8.3), we want to know the total (infinitesimal) probability dP that a particle in the state
�(r) moves through the incoming cross section d� in a time interval dt, and then later passes
through the solid angle d⌦ within the same time interval.

left: To find dP , we realize that IF the particle is
in the volume(s) dV shown in the drawing on the
left (compare drawing earlier), it will pass through
d� or d⌦ respectively. The probability that it is in
that volume is clearly dP = |�(r)|2dV with �(r)
from Eq. (8.8).
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We can read o↵

dP in = |�(r)|2dV = A2 (d�vdt)| {z }
=dV

,

dP out = |�(r)|2dV =

����
f(✓)

r

����
2

(r2d⌦vdt)| {z }
=dV

. (8.9)

These have to be the same along the projectile trajectory dP in = dP out, due to conservation of
probability, hence we deduce the

Di↵erential cross section from scattering wavefunction

d�

d⌦
= D(✓) = |f(✓)|2. (8.10)

which means that we can extract the di↵erential cross section once we know the scattering wave-
function �(r). We can think of (8.8) as the 3D generalisation of the 1D Ansatz (2.28). Same as
for that one, this means that we have to determine f(✓) such that �(r) solves the 3D TISE for the
scattering problem, with the interaction potential V (r) between projectile and target. Clearly for
e.g. scattering of an electron and a proton, we have to solve the same TISE as we solved in week
10 for the Hydrogen atom. However now we are not solving it for bound states, with E < 0 but
for scattering states, with E > 0.

In the following we will see two complementary tricks to solve the 3D TISE for scattering problems,
the partial wave expansion and the Born approximation.

8.3 Partial-wave expansion

8.3.1 Expansion in angular momentum or impact parameter

Assuming a spherically symmetric scattering potential V (r) = V (r), the Hamiltonian commutes
with the angular momentum operator, and we know that we can write a solution of the TISE as

�(r) =
u`(r)

r
Y`m(✓,'), (8.11)

compare Eq. (4.75). As for Hydrogen, the TISE separates into an angular part (4.42) and a radial
part (8.12), where we have already used that the solution of the angular one are spherical harmonics.

Eq. (8.11) represents a fixed angular momentum L2�(r) = ~2`(`+1)�(r), and the radial wavefunc-
tion fulfills

� ~2
2me

d2

dr2
u`(r) +


V (r) +

~2
2me

`(`+ 1)

r2

�

| {z }
⌘Ve↵(r)

u`(r) = Eu`(r). (8.12)
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Here we have E > 0 since we are looking for scattering solutions.

Now we have to build in our scattering boundary conditions, which say that a particle is coming
in as a plane wave travelling into the positive z-direction, as expressed in (8.8) and the associated
figure. In that equation we could of course write eikz in spherical polar coordinates, where this
becomes eir cos ✓. This makes it apparent that we ought to be able to expand the ✓ dependence of
that function in terms of spherical harmonics, since these form a basis of all functions defined in
terms of two angles ✓, ', see section 4.3. Such an expansion is provided by

Rayleigh’s formula: for the expansion of a plane wave in spherical harmonics:

eikz =
1X

`=0

i`(2`+ 1)j`(kr)P`(cos ✓), (8.13)

where j`(kr) is a spherical Bessel function of the first kind.

Before disecting (8.13) a bit more, let us think about what it would mean to “decompose” the
classical incoming state for the scattering problem in terms of (classical) angular momentum. Since
|L| = pb = ~kb for impact parameter b, for all b < b` = `/k, we have that |L| < ~`.

left: Accordingly we can segregate space into
cylinders with increasing classical angular mo-
mentum with respect to the target, as shown. For
a potential V (r) (red) with finite range Rpot (say
V (r) ⇡ 0 for r > Rpot), and small k, we might
encounter scenarios where only projectiles with
smaller angular momentum “feel’ the scattering
potential.

Turning to quantum mechanics, let’s take a look at what the di↵erent contributions ` in the formula
(8.13) mean. We know that no m 6= 0 contributions can arise in (8.11) due to azimuthal symmetry.
From (4.48) you can find

Y 0
` (✓,') =

r
2`+ 1

4⇡
P`(cos ✓), (8.14)

we can hence write the `’th term in the sum (8.13) as i`
p
(4⇡)

p
(2`+ 1)j`(kr)Y 0

` . If there was
only a contribution for a single `, then on an x-axis going through the target (that means x = b,
the impact parameter), the probability density is proportional to (2`+1)|j`(kx)|2, which we below
as a function of xk/~.

200



-6 -4 -2 2 4 6
x k/hbar

0.2

0.4

0.6

0.8

1.0

pl
0

1

2

3

4

5

6

7

left: Di↵erent colors are di↵erent ` as shown in
the legend. You can see that the higher the an-
gular momentum components, the further their
radial wavefunction is pushed out, roughly match-
ing the slicing of the impact parameter axis into
angular momenta suggested by the above classical
picture.

Warning: This picture is intended to give some intuition into decomposing a plane wave in terms
of angular momentum. It is a little bit dangerous since we are trying to discuss a fixed position AND
fixed angular momentum simultaneously, which we really cannot due to the Heisenberg uncertainty
relation.

8.3.2 Interplay with potential range

It is apparent from the diagrams above, that in cases where the range of the potential Rpot is less
than 1 ⇥ (k)�1 we would only expect some low angular momentum components to contribute to
scattering, since the higher ones “will miss” the potential.

To see how that works out in practice, we have to take a closer look at the radial TISE (8.12)

top: Potential taken as V (r) ⇡ �V0✓(Rpot � r) for this example (red), e↵ective potential Ve↵ for
various values of ` (blue), some positive scattering energy E (green) and regions I,II,III.

Based on the potentials on the RHS of that, we can consider three regions as sketched above,
(I) the scattering region where V (r) must be included, (II) the intermediate region, where we
approximate19 V (r) ⇡ 0 but consider the centrifugal term ⇠ `(` + 1)/r2 and (III) the radiation
zone, where we neglect both. In the following we look at the structure of solutions for Eq. (8.12)
in all these regions, focussing on outgoing waves only (since the incoming part of (8.8) is already
sorted out with Eq. (8.13)).

19This requires V (r) to drop faster than 1/r2, and hence importantly excludes the Coulomb potential
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In region (III): Here Eq. (8.12) is simplest

d2

dr2
u`(r) = �k2u`(r), (8.15)

using k =
p
2mE/~. This has the solution u(r) = Ceikr +De�ikr, which are an outgoing and an

incoming spherical wave. For the scattered wave part, we cannot have the latter, hence we set
D = 0.

In region (II): we see that Eq. (8.12) becomes

d2

dr2
u`(r)�

`(`+ 1)

r2
u`(r) = �k2u`(r), (8.16)

which has the general solution u(r) = Arj`(kr) + Bry`(kr), where j`(kr) is a spherical Bessel
function of the first kind as used in (8.13) and y`(kr) one of the second kind. We again want to
focus solely on the outgoing part contained in u(r), which turns out to be proportional to the linear
combination which form a

Spherical Hankel function: of the first kind

h(1)` (kr) = j`(kr) + iy`(kr). (8.17)

Gri�th list a few examples of Hankel functions. Importantly h(1)` (kr) ! (�i)`+1

kr eikr for large kr,
which means our solution for region II naturally approaches the r dependence expected in region
III.

We now use Eq. (8.13) to expand the incoming wave and Eq. (8.14) (there can be no m 6= 0),
Eq. (8.11) and our solutions in regions II and II just found, to write the quite generic scattering
wavefunction (8.8) in much more detail as the

Partial wave expansion of the scattering wave function (in the outer regions II and
III) as

�(r, ✓,') = N
 

1X

`=0

i`(2`+ 1)
h
j`(kr) + ika`h

(1)(kr)
i
P`(cos ✓)

!
, (8.18)

where k =
p
2mE/~ depends on the scattering energy, and all information about the scat-

tered wave is contained in the partial wave amplitudes a`

• Note that it is just a convention to write the coe�cient of the outgoing part as i`+1(2`+1)ka`,
since we could absorb all the clutter in a`, which is not specified yet. These coe�cients are
what became of the constants C in region III and A, B in region II.

• To find the partial wave amplitudes a`, we have to match (8.17) continuously to the solution
of Eq. (8.12) in the inner region I, where the potential is large (this we have not done yet,
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since we have not specified V (r)). This is similar to our matching solutions in region I, II, III
for scattering of the 1D barrier in section 2.2.3 or our matching of WKB solution in various
region in section 7.9.

• While we have thus not actually solved the scattering problem, an important achievement
is that we now know only the a` are to be found, and should give us all information on the
scattering problem.

• For instance, since at large r we have that h(1)(kr) ! (�i)`+1eikr/(kr), by comparing
Eq. (8.23) with Eq. (8.8) we can identify

f(✓) =
1X

`=0

(2`+ 1)a`P`(cos ✓). (8.19)

From this we can find the di↵erential cross section

D(✓) = |f(✓)|2 =
1X

`,`0=0

(2`+ 1)(2`0 + 1)a`a`0P`(cos ✓)P
0

`(cos ✓), (8.20)

and the total cross section

� =

Z
d⌦D(✓) = 4⇡

1X

`=0

(2`+ 1)|a`|2. (8.21)

To get from (8.20) to (8.21) we used the

Orthogonality of Legendre polynomials:

Z
d⌦

r
2`+ 1

4⇡

r
2`0 + 1

4⇡
P`(cos ✓)P`0(cos ✓) = �``0 (8.22)

• You can see this e.g. from Eq. (4.55), using Eq. (8.14).

How to use Eq. (8.23) is best be seen with an example, that trickily avoids having to solve in a
region I, by replacing that with a boundary condition:

Example 64, Quantum scattering o↵ a hard sphere: We are now in a position to re-
visit example 63, but this time quantum mechanical. Hard sphere here means that V (r) = 1
if |r| < R and V (r) = 0 otherwise. As usual with infinite potential walls, we thus have the
boundary condition �(R, ✓,') = 0 for all angles. Using (8.23) this implies

0 = N
 

1X

`=0

i`(2`+ 1)
h
j`(kR) + ika`h

(1)(kR)
i

!
=0

P`(cos ✓)

!
, (8.23)

where the conclusion under the braces follows because the Legendre polynomials P`(cos ✓)
are linearly independent.
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Example continued: We can thus extract all

a` = i
j`(kR)

kh(1)(kR)
, (8.24)

which means we have now completely solved the quantum scattering problem for the hard
sphere.
We can now insert the a` into (8.21) and in the limit kR � 1 (see Gri�th) find a total cross
section

� = 4⇡R2, (8.25)

four times what we found classically (Eq. (8.7)). This corresponds to the surface area instead
of the geometrical cross section of the sphere.

As suggested earlier, for short range potential we might get away with only few contributing partial
waves:

Example 65, S-wave scattering of ultracold atoms: Let’s assume a very short range
potential between atoms and very slow atoms, such that kRpot ⌧ 1. Alternatively think of
E ⇡ 0. We can then read o↵ the drawinga at the beginning of section 8.3.2, that except for
` = 0, none of the radial wavefunctions u`(r) for partial waves should reach r) = 0 and thus
feel the potential. We thus conclude that for very low energy scattering from short ranged
potential, only the ` = 0 portion of the partial wave expansion is important. This is called
s-wave scattering.
The argument could be made more mathematical by going through Eq. (8.16) andEq. (8.15)
again, neglecting k in the right places and connecting solutions in region II and II (see Landau
and Lifshitz, Quantum mechanics, ¶132). You can then show that the contribution of the
`’th partial wave to the total cross section scales like k2`, thus for small k only the lowest is
relevant.
Once we know only ` = 0 as important, and recall that Y 0

0 = 1/
p
4⇡ (just a constant), we

see that we can write (8.8) as

�(r) ⇡ A

✓
eikz + f

eikr

r

◆
, (8.26)

i.e. f is just one number. This is usually expressed as f = �as, where as is called the
(s-wave) scattering length. To find it, we still would have to solve the TISE in region I, or
measure it in an experiment.

aAs for any TISE, the solution will drop exponentially once E < V (x).
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