
Week 3
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

7.2 Degenerate perturbation theory

There were various indications earlier that perturbation theory runs into complications if the un-

perturbed spectrum includes degeneracies E(0)
n = E(0)

` for n 6= `. Expressions (7.21) and (7.23)
then contain possibly diverging or indeterminate terms, and the validity condition (7.35) might not
be possible to fulfill.

In the first order correction for the energy (7.12) the problem with degeneracy is less obvious, but

there is one as well: Recall from (3.4.1), that in case of a D-fold degenerate eigenvalue E(0)
d = E(0)

for D di↵erent indices d, already the eigenvectors belonging to that eigenvalue are not uniquely

defined. If we found Ĥ(0)| (0)
d i = E(0)| (0)

d i, for d = 1, · · · , D, we could use the orthonormal set

{| (0)
d i}, or instead change the set of eigenvectors to any other orthonormal set {|  ̃(0)

d i} within
the subspace spanned by the first set.

Now, usually the perturbation �Ĥ 0 lifts the degeneracy, such that for � > 0 eigenvectors | n i for
di↵erent eigenvalues are clearly defined.

left: Then even for � = 0 we can find a
unique eigenvector through the limit lim�!0| n i,
as sketched in the example to the left.

Unfortunately, unless we have found the perturbed solution, we don’t know what to use as un-

perturbed eigenstates | (0)
d i at � = 0, so we wouldn’t know what to insert into the first order

formula (7.12) .
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Hence let us leave the unperturbed eigenstate(s) belonging to E(0) unspecified for now, as in

| (0) i =
X

d

cd| (0)
d i (7.36)

with some complex coe�cients cd. We then insert this into Eq. (7.9), which is valid just as before
(we have suppressed the eigenstate index n as in the above.

Ĥ(0)| (1) i+ Ĥ 0| (0) i = E(0)| (1) i+ E(1)| (0) i, (7.37)

Ĥ(0)| (1) i+ Ĥ 0
X

d

cd| (0)
d i = E(0)| (1) i+ E(1)

X

d

cd| (0)
d i. (7.38)

Now we take the scalar product with h (0)
d0 |

h (0)
d0 |Ĥ(0)

| {z }
=E(0)h 

(0)

d0 |

| (1) i+ h (0)
d0 |Ĥ 0

X

d

cd| (0)
d i = E(0)h (0)

d0 | (1) i+ E(1)
X

d

cd h (0)
d0 | (0)

d i
| {z }

=�
dd0

. (7.39)

The first terms on the LHS and RHS cancel as they did before, and we can rewrite the remainder

using matrix elements H 0

d0d = h (0)
d0 |Ĥ 0| (0)

d i of the perturbation in the degenerate subspace:
X

d

H 0

d0dcd = E(1)cd0 . (7.40)

With the coe�cient vector c = [c1 · · · cD]T similar to (3.30) we finally have:

First order correction to the energy (degenerate)

H 0 · c = E(1)c. (7.41)

where H 0 is the matrix form of the Hamiltonian in the degenerate subspace.

• In words, we find the first order corrections E(1) of the D-fold degenerate eigenvalue E(0) by
diagonalising the D ⇥D matrix form of the perturbation Hamiltonian H 0 in the degenerate
subspace. The eigenvectors c provide the relevant first order states via (7.36).

Example 57, Perturbed three level system with degeneracy: Let us make example
56 slightly more complex, going to three levels, two of which are degenerate in the absence

of the perturbation. Using E(0) 6= E(0)
3 , we write

Ĥ(0) =

2

64
E(0) 0 0
0 E(0) 0

0 0 E(0)
3

3

75 , Ĥ 0 = �

2

4
0  0
 0 
0  0

3

5 . (7.42)

To find the perturbation of E(0) Eq. (7.41) instructs us to diagonalize Ĥ 0 in the degenerate
subspace, i.e. the part in between dashed lines above:

H 0 = �


0 
 0

�
. (7.43)
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Example continued: which has eigenvalues E(1) = ±�, with eigenvectors c = [1±1]T /
p
2.

For the perturbation of E(0)
3 we can use the non-degenerate result, (7.12), which gives

E(1)
3 = 0 (exerise), thus we move to second order (7.23), which gives E(2)

3 = |�|2/(E(0)
3 �E(0)

1 )
(exercise).

left: For small �, energies from perturbation
theory (black dashed) agree well with the ex-
act eigenvalues of Ĥ(0) + Ĥ 0 which can easily
be found numerically (brown solid). For the
figure we set  = 1, E(0) = 0 and E(3) = 5 (in
some arbitrary units).
Note, that accidentally using the non-
degenerate result (7.12) for the perturbation of

one of the degenerate eigenenergies E(0)
0 gives

E(1)
0 = 0 and hence the wrong scaling of the

perturbation with (�)2 (as lowest remaining
possible power of ) instead of linear in . Us-
ing (7.23) would not work at all, since it blows
up.

• See Gri�th for one other extensive example with a 2D harmonic oscillator.

• While the above example is designed to stress the point that using non-degenerate pertur-
bation theory in cases with degeneracy can give wrong results, there are also cases where

one can get away with it. These are those where the perturbation Hamiltonian Ĥ 0 happens
to be diagonal in the unperturbed basis | (0) i, in particular the part used to describe the

degenerate subspace. This implies that in (7.21) and (7.23) we have h (0)
` |Ĥ 0| (0)

n i = 0 for

all index pairs n, ` for which E(0)
n � E(0)

` = 0, and thus there is the possibility that the sum
remains finite.

7.3 Example applications: Atomic finestructure and external fields

In the present section we will take a closer (“zoomed”) look at the spectrum of the Hydrogen
atom. For the purpose of the present course the main objective is to practice the perturbation
methods and revise some of QM-I weeks 9,10,11. However all this lays also the basis for the later
development of atomic physics, which you will see in PHY402 next year, to where I defer most of
the implications of what we calculate here.

7.3.1 Finestructure

In section 4.6 we have neglected a couple of e↵ects (three for now) which provide small corrections
to the energies in a Hydrogen atom. These can be calculated using perturbation theory.
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(i) Relativistic correction: The calculations in section 4.6 were fully non-relativistic, i.e. we used a

kinetic energy T̂ = p2

2me
not

T̂ =
p
p2c2 +m2

ec
4 �mec

2 = mec
2

0

@
s

1 +

✓
p

mec

◆2

� 1

1

A (7.44)

which is the relativistic expression for the kinetic energy. For a very rough estimate as to how
justified this was, we can calculate e.g. a velocity scale for the electron from �v = �p/me =
~/(2a0me) ⇡ 106 m/s, where we used the HUP (1.46) and a position uncertainty �x ⇠ a0. This is
about 3⇥ 10�3c. Much slower than the speed of light, but not so slow that relativistic corrections
might not have a minor quantitative impact.

One could now go to a fully relativistic description of the electron, using the Dirac equation (see
later QM-II-week 12), but based on �v above that might be overkill. Instead we just Taylor expand
the squareroot in (7.44) to reach

T̂ =
p2

2me
� p4

8m3
ec

2
| {z }

=Ĥ0
1

+ · . (7.45)

The first term was taken care of earlier. The second term is declared our perturbation, and treated
using perturbation theory. We know that all the unperturbed Hydrogen states with n > 1 are
degenerate, since energies (4.90) do not depend on ` and m. However this is a case where we
can still use the simpler non-degenerate perturbation theory, since

⇥
Ĥ 0

1, L̂
⇤
. See discussion after

example 57.

According to (7.12), we should evaluate

E(1) = � 1

8m3
ec

2
hp̂4i, (7.46)

where the expectation value is to be taken in the Hydrogen state �n`m for which we want to know
the energy correction. In principle we could write the momentum operator through derivatives and
evaluate this directly. The integral becomes slight less messy by using the trick:

hp̂4i = h�n`m |p̂4|�n`m i = h p̂2�n`m | p̂2�n`m i (7.47)

and then rewriting the TISE (1.62) we have p̂2�n`m = 2me(En � V )�n`m and thus

E(1) = � 1

mec2

"
E2

n + 2En
e2

4⇡✏0
h1
r
i+

✓
e2

4⇡✏0

◆2

h 1
r2

i
#
. (7.48)

Both expectation values are still 3D integrations, that come out as h1r i = 1/(n2a0) and h 1
r2 i =

1/[(`+ 1/2)n3a20) (assignment 3). We can insert these results into (7.48) and simplify to find

E(1) = � E2
n

2mec2

"
4n

`+ 1
2

� 3

#
. (7.49)

We do not yet interpret (7.49) since there is two more contributions to the finestructure to be
calculated, but we already see that this is a small correction to earlier Hydrogen energies, by a
factor of roughly En/(mec2) ⇡ 2⇥ 10�5.
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(ii) Spin orbit coupling: In our earlier treatment of the Hydrogen atom, we did not consider the
spin of the electron, let us rectify that. First we write Hydrogen states containing the spin |n`ms i,
such that their position space representation is:

h r |n`ms i = �n`m(r)�s (7.50)

with �n`m(r) as before in Eq. (4.91) and � as spinor, see Eq. (4.107).

It turns out the leading e↵ect of the electron spin on atomic energies is through the interaction
between the magnetic moment associated with the spin, see section 4.7.1, with the magnetic field
created by the orbital motion of particles.

left: To understand why the
latter exists, see figure on the
left, showing a classical pic-
ture of the orbit of the elec-
tron.

We move to the rest-frame of the electron, where the proton moves with velocity �v (where v is the
electron velocity in the lab-frame). The electron then ”sees” a positively charged proton orbiting
itself and hence a magnetic field:

B = �eµ0

4⇡

v ⇥ r

r3

✓
from B =

µ0

4⇡

qv ⇥ r̂

r2
, see electro-magnetism lectures

◆
(7.51)

Now we use the

Hamiltonian for a magnetic moment in a magnetic field

Ĥmag = �µ̂ ·B Energy of spin in magnetic field (7.52)

µ̂ = �gsµbŜ/~ Electron magnetic moment (7.53)

Ĥmag = +gs
µb

~ B · Ŝ µ̂ ⇠ �Ŝ since q < 0 (7.54)

gs ' 2 Gyromagnetic factor (7.55)

µB =
e~
2me

Bohr Magneton e>0 here (7.56)

and then get:

Ĥmag = gs
µb

~|{z}
= e

2me

✓
� µ0e

4⇡me

p⇥ r

r3

◆

| {z }
=B

·Ŝ (7.57)

L=r⇥p
=

gsµ0✏0
2m2

e

e2

4⇡✏0r3| {z }
1
r

dV (r)
dr

L̂ · Ŝ = 2Ĥ 0

2. (7.58)

It turns out the actual perturbation, Ĥ 0

2, is a factor of two smaller, due to the e� rest frame not
being inertial, see Shankar.
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This time we can not directly use non-degenerate perturbation theory to handle Ĥ 0

2, since Ĥ 0

2 is
not evidently diagonal in the basis of unperturbed Hydrogen states |n`ms i. First, we shall define
the

Total angular momentum of the electron

Ĵ = L̂+ Ŝ, (7.59)

• We use the addition of two angular momenta presented in section 4.8, if you haven’t yet,
please revise that now.

From this we know that after that definition, we can use new eigenstates of the total angular
momentum of the electron |�n,`,s,j,mj

i, such that

Ĵ
2|�i = }2j (j + 1) |�i, (7.60)

Ĵz|�i = }mj |�i. (7.61)

The range of the total angular momentum according to Eq. (4.126) is j = |`� s|, · · · , `+ s, where
` is the orbital angular momentum quantum number and s = 1/2 the spin angular momentum
quantum number of the electron. Thus

j =
1

2
(` = 0, s =

1

2
), (7.62)

j = `± 1

2
(` > 0, s =

1

2
). (7.63)

One case we can handle quickly first is ` = 0. In that case hL̂ · Ŝi = 0, since the angular momentum
is zero. (Technically we only know L̂2| ` = 0 i = 0 and L̂z| ` = 0 i = 0 (since m = 0). Show

hL̂xi = hL̂yi = 0 as an exercise). Now, for looking at ` > 0, the point of introducing the total
angular momentum, was that we can now write

L̂ · Ŝ =
1

2

⇣
Ĵ2 � L̂2 � Ŝ2

⌘
. (7.64)

Hence we see that
⇥
Ĥ 0

2, Ĵ
⇤
= 0 (simple exercise), so if we use states |�n,`,s,j,mj

i as unperturbed

basis | (0) i for perturbation theory, we can again use non-degenerate perturbation theory. Then

E(1) = h�nljmj
|Ĥ 0

2|�nljmj
i (7.65)

=
}2
2
h⇠ (r)i


j (j + 1)� l (l + 1)� 3

4

�
. (7.66)

The factor }2
2 comes from Ĵ2

2 etc., and we used the short hand Ĥ 0

2 = ⇠ (r) L̂ · Ŝ such that

h⇠ (r)i =
Z

d3r�⇤nljmj
(r) ⇠ (r)�nljmj

(r) . (7.67)

For this we need another integration from assignment 3 which is

h 1
r3

i = 1

`(`+ 1
2)(`+ 1)n3a30

, (7.68)
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which also makes sense only for ` > 0. Then alltogether

E(1)
SOC =

E2
n

mec2
j (j + 1)� l (l + 1)� 3

4

`(`+ 1
2)(`+ 1)

, (7.69)

where we have re-shu✏ed all the constants, using the unperturbed Hydrogen energies En fom (4.90).

The expression makes it clear that the spin-orbit correction E(1)
SOC is smaller than En by the ratio

En/mec2 of electronic energy to electron rest-mass energy.

(iii) Darwin term: There is one last correction to take care of: A further consequence of relativis-
tic QM is the existence of anti-particles (e.g. positrons, e+). These can then be part of vaccum
fluctuations (see QED/quantum field theory), and interact with the proton/nucleus.

left: This gives rise to tiny random kicks in the proton that
e↵ectively smear its position out and make it blurry (car-
toon on the right) (Some call this “Zitterbewegung”, which

is German for “shaky movement”).

It turns out this can be described by a perturbation Hamiltonian Ĥ 0

3 = � ⇡}2
2m2c2

Ze2

4⇡✏0
� (r). Thanks

to the delta-function, the energy corrections is very easy to evaluate as

�E3 = h�nljmj
|Ĥ 0

3|�nljmj
i = ⇡}2

2m2
ec

2

Ze2

4⇡✏0
|�nljmj

(0) |2 = En
↵2

n
�`,0 (7.70)

From Eq. (4.92) we see that this shifts only the ` = 0 states, since |�n`m(0)|2 = 0 for ` > 0.
Confusing subtlety: If we try to use the result (7.69) at ` = 0 even though the in-between step

(7.68) is not valid there, we have to insert j = 1/2 in the numerator. After cancellations the result

is actually finite, and incidentally the same as (7.70). However the approach taken here seems safer

overall.

Combination into finestructure correction: Alltogether, we have used the

Fine-structure Hamiltonian

Ĥ 0

FS = Ĥ 0

1 + Ĥ 0

2 + Ĥ 0

3. (7.71)

Ĥ 0

1 = � p4

8m3c2
relativistic correction to kinetic energy (7.72)

Ĥ 0

2 =
1

2m2c2
1

r

dV

dr
L̂ · Ŝ spin-orbit coupling (7.73)

Ĥ 0

3 = � ⇡}2
2m2c2

e2

4⇡✏0
� (r) Darwin term (7.74)

to find the
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Fine structure of the Hydrogen energies

Enj
= En

"
1 +

↵2

n2

 
n

j + 1
2

� 3

4

!#
(7.75)

with En from Eq. (4.90) and ↵ = e2

(4⇡✏0)}c ' 1
137 the finestructure constant.

• For this we have added (7.49), (7.69), (7.70) and simplified

• An important change is that the degeneracy of energy in j is lifted by finestructure corrections.

• Note En < 0, the sign of shift depends on n, j but is mostly towards lower energies. See
Gri�th for some drawings and diagrams.

• Some of the Hamiltonians used for fine structure are not rigorously found here, but motivated
somewhat ad-hoc. All these arise in a treatment of the Dirac equation, which is the special
relativistic quantum wave equation, when taking the limit of small velocities. In particular
this takes care of “confusing subtlety” above.

7.3.2 External electric fields, Stark e↵ect

Further good applications of perturbation theory are atoms placed in external fields. You can
calculate that the electric field created by the proton at a distance of r = a0 is E = 5⇥ 109 V/cm.
Compared to that, many fields that we would prepare in the lab are indeed a small perturbation.

Now we have to look at the

Hamiltonian for an electron in an electric field (of the proton and an external one):

Ĥ =

Ĥ0z }| {

� ~2
2m

r2 � e2

4⇡✏0r
+

Ĥ
0

z }| {
eE · r . (7.76)

• Let us assume E = E êz (along z-axis) and constant across atom.

• The Hamiltonian (7.76) assumes the E-field is strong enough for fine-structure to be negligible.

• For our application of perturbation theory, we split the Hamiltonian into Ĥ0 and Ĥ
0
as

indicated. Clearly the unperturbed states |�(0)n`m i are just the Hydrogen states found in
section 4.6 (Eq. (4.91)).

Linear Stark e↵ect: Let us first look at any shifts of first order in E . For non-degenerate states (for
Hydrogen only the n = 1 state), we can use Eq. (7.12): In fact for all n`m

E(1) = eE · h�n`m|r |�n`mi = 0. (7.77)
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• Proof: See example 50. Physically this means that the unperturbed Hydrogen state does not
have a mean electric dipole and hence no mean energy in an external electric field.

However all n > 1 states are degenerate, so we have to use degenerate perturbation theory. Let us
take n = 2 as the simplest example, for which there are four degenerate states |�200 i, |�21(�1) i,
|�210 i and |�211 i. To use (7.41), we have to set up the Hamiltonian matrix in the degenerate
subspace, with the above ordering of basis states Eq. (7.41) becomes

0

BB@

0 0  0
0 0 0 0
 0 0 0
0 0 0 0

1

CCA

0

BB@

c200
c21�1

c210
c211

1

CCA = E(1)

0

BB@

c200
c21�1

c210
c211

1

CCA . (7.78)

with  = eEh 210 |z| 200 i = eEh 210 |r cos ✓| 200 i = �3ea0E the only nonzero matrix element of
H 0. We had already seen that all diagonal entries are zero in (7.77). We can also see directly that
h 2`m |r cos ✓| 2`0m0 i must be propertional to �m,m0 , since the operator in the matrix element does
not contain the azimuthal angle '.

The set of eigenvalues of the matrix in (7.78) is E(1) = {+3ea0E ,�3ea0E , 0, 0} with eigenvectors

c = {[1, 0,�1, 0]/
p
2
T
, [1, 0, 1, 0]/

p
2
T
, [0, 1, 0, 0]T , [0, 0, 0, 1]T }. We thus reach the picture of the

Linear Stark e↵ect

• Thus, for all excited Hydrogen states there is an energy shift E(1) to first order PT propor-
tional to the electric field strength E , this is called linear Stark e↵ect. The reason is, that
you can form a state as a linear combination of the degenerate e.g. n = 2 states that does
have a dipole, namely |�200 i±|�210 i. You had seen in Assignment 1 Q1, how superpositions
such as these shift the electron cloud up or down on the z-axis, relative to the proton, thus
creating a net dipole.

For n = 1, we have to go to second order since the first order e↵ect was zero. There we find the
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Non-linear Stark e↵ect: For non-degenerate states (in Hydrogen only |100i), we have to
go to second order perturbation theory to get a non-vanishing Stark e↵ect

�E(2)
100 =

X

n 6=1,l,m

|h�nlm|eEz |100i|2
E100 � Enlm

. (7.79)

• As in Eq. (7.78), all matrix elements |h�n10|eEz |100i|2 will be non-zero, and E100 �En10 < 0

for all n. Thus �E(2)
100 < 0 and ⇠ (eE)2 =) quadratic Stark e↵ect.

• For the quadratic Stark e↵ect, the external field can induce an electric dipole, which is then
⇠ E , and in turn interacts with the field, providing a net scaling ⇠ E2.

7.3.3 External magnetic fields, Zeeman e↵ect

Finally, let us consider a uniform external magnetic field B = Bez along the z-direction. This is
described by the

Hamiltonian for Hydrogen in an external magnetic field:

Ĥ =

see electro-dynamicsz }| {
1

2m

�
p+ eA

�2 � e2

4⇡✏or
+

see Eq. (7.54)
z }| {
gsµB

~ B · S +

see Eq. (7.73)
z }| {
⇣(r)L · S , (7.80)

with vector potential

A =
1

2

�
B⇥ r

�
for a constant B-field. (7.81)

• We can rewrite (7.80) as

Ĥ =

Ĥaz }| {

� ~2
2m

r2�

Ĥbz }| {
e2

4⇡✏or
+

Ĥcz }| {
⇣(r)L · S+

Ĥdz }| {
µB

~
�
L+ 2S

�
B+

Ĥez }| {
e2

8m

�
B⇥ r

�2
, (7.82)

using a lot of vector calculus.

We now analyze Eq. (7.80) with perturbation theory depending on relative importance of terms
a � d, which depends on the state to be perturbed |�nlmi and the magnetic field strength B. We
neglect Ĥe, since it will only become relevant at extremely strong magnetic fields.

Linear Zeeman e↵ect: (strong B-field) Let us first assume the energy due to the magnetic field
is large compared to the fine-structure energy. Then in a first step we neglect Ĥc and take our
unperturbed Hamiltonian to be Ĥ0 = Ĥa + Ĥb + Ĥd.
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For this we actually already know the eigenfunctions, since the first two terms just constitute the
usual Hydrogen Hamiltonian and for magnetic field in the z-direction, the last part

Ĥd =
µB

~ B0
�
L̂z + 2Ŝz

�

can be expressed in terms of angular momentum z-components (and thus commutes with L̂2, Ŝz,
Ŝ2, Ŝz. Thus, |�nlml

i ⌦ |smsi already fulfil

Ĥ0|�nlmlsms
i = Enmlms

|�nlmlsms
i.

with

Zeeman-shifted energies

Enmlms
=

see Eq. (4.90)
z}|{
En +µBB0(ml + 2ms), ms = ±1

2
. (7.83)

We could as a next step add Ĥc in (7.82) as a perturbation, which gives the energy spectrum for
medium B-fields (Paschen-Back e↵ect, see Assignment 3).

Anomalous
15

Zeeman e↵ect: (weak B-field, most common case) For relatively weak magnetic fields,
the fine-structure term Ĥc will be larger than Ĥd. We thus split the Hamiltonian according to

Ĥ0 = Ĥa + Ĥb + Ĥc with Ĥ
0
= Ĥd

Eigenstates of Ĥ0 are the same as we had found in the section for fine-structure, section 7.3.1,
and are thus states with definite total angular momentum |n, j, l, s,mj i. To proceed further, we
expand total angular momentum states in terms of orbital angular momentum and spin states as
in Eq. (4.127).

|j, l, s,mji =
X

m
l
,ms

ml+ms=mj

hl, s,ml,ms|j, l,mji| {z }
⌘C

l,s;m
l
,ms

j,mj

|l, s,ml,msi,

where Cl,s;m
l
,ms

j,mj

are Clebsch-Gordan coe�cients (cgc).

Using the coupled j basis as for fine-structure, let us first evaluate the easy part:

�E = h�njlmj
| µB

~ (Ĵz + Ŝz)Bo |�njlmj
i

= µBmjBo +
µBBo

~ h�njlmj
| Ŝz |�njlmj

i. (7.84)

Now we need some cgc, but we only look at s = 1
2 , so j = l ± 1

2 . Then�����

⇣
j = l +

1

2

⌘
, l, s,mj

+
=

r
l +mj + 1/2

2l + 1

�����l, s,ml = mj �
1

2
,ms =

1

2

+

+

r
l �mj + 1/2

2l + 1

�����l, s,ml = mj +
1

2
,ms =

�1

2

+
(7.85)

15The name ”anomalous” is historical
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and
�����

⇣
j = l � 1

2

⌘
, l, s,mj

+
= �

r
l �mj + 1/2

2l + 1

�����l, s,ml = mj �
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2

+

+

r
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2l + 1

�����l, s,ml = mj +
1

2
,ms =

�1

2

+
. (7.86)

We now use these two expressions in Eq. (7.84) and simplify to get

Anomalous Zeeman shift
�E = gµBmjB0, (7.87)

with Landé g-factor

g = 1 +
j(j + 1) + s(s+ 1)� l(l + 1)

2j(j + 1)
.

So the number of split energy levels is now given by the number of di↵erent values for mj .

Example 58, All fields Zeeman e↵ect: The two cases above are for strong and weak
fields and seemingly behave quite di↵erent.

left: It turns out for in between
fields, the energy levels see a con-
tinuous transition between the two
cases. For this one needs to diago-
nalise the full Hamiltonian, for ex-
ample for ` = 1 and s = 1/2 in a 6-
dimensional Hilbertspace (e.g. m` =
�1, 0, 1⌦ms = �1/2, 1/2). See more
details in assignment 3.

7.3.4 Outlook on atomic physics

In PHY402 you will encounter at least two further “details” of atomic energy levels: The Lamb-
shift, which is due to quantum-electro-dynamics (QED) and the hyperfine structure. Like the name
of the latter suggests, these energy di↵erences are again orders of magnitude smaller than the fine
structure, and mostly have to do with the atomic nucleus.

Since we called everything starting from Fine structure small corrections, you might get the im-
pression that this is unimportant details rarely needed. That impression is totally wrong since the
adjective “small” is of course relative. The corrections are small compared to the basic electronic
energies from QM-I week 10, but they can be huge compared to the energy resolution of modern
lasers and energy scales relevant to modern quantum technology. For fields like quantum optics,
quantum information, cold atomic physics, the e↵ects previewed here and further developed in
PHY402 are thus crucial for all experiments.
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