
Week 12
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

11 (Glimpse at) Relativistic quantum mechanics

Further reading: For this section, refer to Shankar, section 20 (SH), and Sakurai, chapter
8 (SA)

What we have done so far was exclusively non-relativistic quantum mechanics. The formalism
shown is incompatible with special relativity in three essential ways: (i) Space and time are clearly
treated in a very di↵erent way, which they should not since they can transform among each other
using the Lorentz transformation. (ii) We used non-relativistic formulae for energy and momentum,
these have to be changed into the relativistic version. (iii) We usually dealt with one particle, where
we mentioned multiple particles, their number was conserved. However due to E = mc2, we can
convert energy into particles and the reverse, hence a relativistic theory must also accommodate
changing particle numbers. Ultimately both objectives are fulfilled in the framework of quantum
field theory, which replaces the concept of particles with the concept of (quantum) fields. As
a first step in that direction, we shall show here how one can at least replace the TDSE with a
relativistically invariant equation of motion for the electron, called the Dirac equation. This already
provides us with two important concepts, spin and anti-matter.

Note that the general theory of relativity has not yet been successfully quantized, despite a century
of trying (Nobel prices for you).

11.1 The Dirac equation

The simplest attempt to reach an equation of motion that adheres to special-relativity, would be
to replace the Hamiltonian for the non-relativistic free particle Ĥ = p̂2/(2m) with its relativistic
counter-parts:

Ĥ =
p
c2p̂2 +m2c4, (11.1)
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where m is the rest mass of the particle and c the speed of light. But inserting this into the TDSE
(and expanding the squareroot into a power series) gives

i~ d

dt
�(x, t) = mc2
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�(x, t), (11.2)

which, when converting p̂ ! �i~d/dx, treats the space and time variables even more di↵erently
(first order derivatives in time, infinite order in space) than our non-relativstic TDSE, so it fails in
our quest to find a more elegant, obviously Lorentz invariant, theory.

As slightly better approach is to not use the squareroot, and encode E2 = c2p̂2 + m2c4 into a
waveequation (using the same replacements for E = i~d/dt and p̂ ! �i~d/dx that you had seen
in e.g. PHY106 to motivate the TDSE. This provides us with the

Klein-Gordon equation
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�(x, t) = 0, (11.3)

which is already a relativistic wave equation for a spinless particle

• This is now symmetric in the order of space and time derivatives, and you could proof, if you
wanted to, that the equation remains form invariant under a Lorentz transformation.

• An unsatisfactory feature is that it is second order in time, while we know the non-relativistic
TDSE is first order in time, such that knowledge of �(x, t = 0) dictates the entire future of
the wavefunction. We would want to preserve this feature also in relativistic theory.

• Let us take it as an experimental fact that the electron is a spin-1/2 particle and has anti-
particles. The equation fails to provide either, so we cannot use it to describe electrons. It
can however be used to describe particles that actually have spin s = 0, such as some pions.

To try to finally reach a relativistic quantum wave equation that is first order in time, we follow a
brute force approach due to Dirac: From (11.1) we would reach our objective of first order equations
in time AND space, if the argument of the squareroot could be written as the square of a function
that is linear in the momentum. Let us just demand this:

c2p̂2 +m2c4 = c2
�
p̂2x + p̂2y + p̂2z

�
+m2c4

!
= (c↵xp̂x + c↵yp̂y + c↵z p̂z + �mc2)2. (11.4)

Here ↵ = [↵x,↵y,↵z]T and � are “coe�cient objects”, that we now want to fix by equating the left
hand side and right hand side. We obtain the requirement (see Shankar for one more line of math):

↵2
k = �2 = 1,

↵i↵j + ↵j↵i = {↵i,↵j} = 0, for i 6= j

↵i� + �↵i = {↵i,�} = 0. (11.5)
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The conditions are called Cli↵ord algebra. Clearly the coe�cient objects cannot be real or complex
numbers. We can however make the above algebraic rules work out, if we choose them as matrices.

Anti-commutator: In (11.5) and the following, the symbol

{Ô1, Ô2} = Ô1Ô2 + Ô2Ô1, (11.6)

is called the anti-commutator of two operators (matrices).

These matrices have to be Hermitian, so that the Hamiltonian is Hermitian. They also must be
traceless and have eigenvalues ±1 (See Shankar for reasons), such that in the end one finds they
must be 4⇥ 4 matrices. The exact choice is not unique, but usually one takes the

Dirac matrices: as

↵ =


0 �
� 0

�
, � =


1 0
0 �1

�
, (11.7)

where each panel in the matrix is itself a 2 ⇥ 2 matrix, such that � is the vector of Pauli
matrices defined in Eq. (4.112).

Using these matrices we can now write the

Dirac equation for a relativistic spin-1/2 particle as

i~ @

@t
�(x, t) =

�
c↵ · p̂+ �mc2

�
�(x, t), (11.8)

where the wavefunction �(x, t) must be a four-component vector (composed of spinors, see
section 4.7.2), for it to make sense to apply the 4⇥ 4 matrices ↵, � onto it.

• Roughly speaking, we got ourselves into a 4 components wavefunction because it turns out
the equation describes not only the electron (which would need only two components, being
spin-1/2) but also the positron (another spin-1/2 particle).

• By adding to the Dirac equation the interaction with electromagnetic fields as in (10.1), we
can now derive all of the terms that give rise to Finestructure that we had used in section 7.3.1,
without having to make the handwaving arguments we did there. See e.g section “Hydrogen
finestructure” from page 569 in Shankar.

• When looking at the free-particle at rest p one finds solutions with energy E = mc2 and
E = �mc2. The negative energy solutions are of course very irritating. See Shankar and
Sakurai for the discussion of the early historical ideas on how to resolve this, Dirac’s “electron
sea”, just filling the negative energy states up with Fermions thus making them inaccessible,
and Feynmans “negative energy particles travel backwards in time”. All these concepts are
now more satisfactorily replaced in QFT (quantum field theory), where we no longer start
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with a certain number of electrons or positrons, but instead start with a Lorentz invariant
spin-1/2, spinor quantum field, which then contains electrons and positrons as excitations of
varying number (see QFT lectures).

• While we show the Dirac equations here mainly as an appetiser for QED/QFT lectures, it has
its applications also in e.g. atomic physics, for example when you look at electronic states of
massively ionized heavy atoms (i.e. U+91). In these the “outer electron” then sees so strong
fields, and thus becomes so fast, that it becomes highly relativistic.
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