
Week 0
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

6 Mathematical interlude II

6.1 Administrative a↵airs

(i) O�ce: drop me an email to arrange a skype call
Lecture times: Mon 10-10:55 am, Wed, Fri 9 am - 9:55 am (Slot E)
place: AB1A1 and Studio AIR
O�ce hours: Wed 14:30-16:30.
Phone: 1213
Email: sebastian@iiserb.ac.in
webpage: http://home.iiserb.ac.in/⇠sebastian/teaching.html

(ii) Literature:

• D. J. Gri�ths, Introduction to Quantum Mechanics [GR] the textbook

• R. Shankar, Principles of Quantum Mechanics, [SH]

• J. J. Sakurai, Modern Quantum Mechanics [SA]

The course will mainly follow GR and SH. Where stray topics are taken from elsewhere I will
try to indicate this.

(iii) Lectures and tutorials

• I am arranging lecture notes into “week” segments, based on similar content. While
most of those segments should indeed take a week for us to work through, this will not
be true for all and they may take less or more often more time.

• One of the weekly sessions will alternate between tutorial and TA-class in studio AIR as
you are used to (A) In one week we shall have a flipped classroom tutorial. In these we
will do little tasks to understand the material more deeply. You will have to have gone
through the lecture notes prior to the flipped classroom session. (B) The following week
we shall do a TA-class/assignment class in which you present the solutions of assignments
to each other. This semester we will require everyone to present at least once, otherwise
your final assignment score will be halved. We also require everyone, when asked, to be
able to present solutions that carry their name. Either of these sessions are also implicitly
Q&A sessions where you should ask your mates, the TAs and myself any questions you
may have.
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(iv) Assessment: Note: The weightages and numbers will be added once the senate guidelines for

the next semester are out

• 2 scheduled Quizzes: 15% There will be two quizzes lasting 1-1.5 hours.

• Assignments: 20% There will be about five to seven assignments handed out with a
two week deadline each. I expect you to form teams of 4-6 students and stick in these
teams for the semester. Hand in only one solution per team. The TA is instructed
to give full marks for any serious attempt at a given question of the assignment, even
if the result is wrong. This is to discourage copying and encourage doing it yourself.
However, the TA is asked to deduct marks for messy presentation and blatant copying
from anywhere. The same teams will be used in tutorials, see below. Submit your final
assignment solution via email to the TA. All has to be integrated in a single file, e.g. pdf.
This may be a good opportunity to learn LaTex and nicely typeset your solution, but
handwritten and good-quality scanned/photographed is fine too. See also notes above

about TA class.

• Numerics component of assignments: Moderns science almost always necessitates
the heavy use of computers. Most assignments will contain a numerics component, to
be done using matlab and/or mathematica. Please make the campus license version
downloadable from the CC webpage available on at least one computer in your team.
You shall also need VPN access to the campus network for the matlab license. For each
assignment, I will provide a template code package that you have to only minorly edit.
See notes on numerics assignments online. No prior experience of either programming
or matlab should be required, but if you read some online notes regarding introduction
to matlab in the first weeks, that might allow you to have more fun with this part of the
assignments.

• TA class and tutorial attendance: 5% These will be compulsory. When attendance
is less than 60% the marks for this component are 0, and for more than 90% they are
100. In between they are as per fractional attendance.

• Mid-sem exam: 30%, Final exam: 30% The exams will try to test understanding
of the essential physics concepts taught, not maths. For guidance regarding what are
the most important concepts look at the quizzes, assignments and tutorials. All exams
will be designed to give a significant advantage to those students that solved all tutorials
and assignments by themselves within their team.

6.2 Course Outline

PART 2 (PHY304)

6) Mathematical Interlude II: ⇠ 2 weeks
• Motivation, Symmetries and conservation laws

7) Approximation methods for time-independent problems: ⇠ 4 weeks
• Time independent perturbation theory, variational method, WKB approximation

8) Quantum scattering theory: ⇠ 2 weeks
• Born approximation, partial wave decomposition
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9) Quantum dynamics: ⇠ 3 weeks
• Time dependent perturbation theory, Fermi’s golden rule, adiabatic theorem

10) Advanced topics: ⇠ 2 weeks
• Basic Gauge theory, Charged particle in an electromagnetic field, Relativistic quantum me-
chanics

Contents

6.3 Math content

Some good news: Most of possibly new math to do with quantum mechanics, you already encoun-
tered in QM-I. You can treat part II as an extensive exercise in that regard. We will mention some
links to group theory in passing in the next week, but those will be bonus material only.

6.4 Motivation

• In PHY303 QM-I we have now covered most of the essential basics of non-relativistic quantum
mechanics. So why do we need QM-II? It turns out that we unfortunately also covered
pretty much all major examples where a closed analytical solution is possible. I have already
acquainted you with the idea to simply solve some problems that are too hard for analytics on
the computer, but that typically only works for small problems, few dimensions, few particles
etc. Also, even if the computer can solve it for us, it cannot understand it for us.

• Hence for almost all practical problems, we require a powerful set of approximation methods,
which are subject of the present course. Their main purpose is not to just solve complex
problems, but to gain physical understanding that cannot be gained without them. The
methods are logically grouped into (i) time-independent ones, that help us find eigenstates
of the TISE (1.62) for cases that are more complicated than those for which we can find a
direct solution, and (ii) time-dependent ones, that help us find solutions of the TDSE (1.2)
for cases with time-dependent Hamiltonian, that we have essentially not yet looked at, at all.

• Some directions where we shall need approximations: We looked at the particle in a square
well, plane wave, harmonic oscillator, spin etc. But what if there are multiple particles of
these types, all coupled to each other?

• The main time-independent problems of practical interest are to find the ground-state of a
complex system, for example in material science. We want to then be able to understand
complex systems based on similar more straightforward systems, see example 45 below.

• However whenever we want to talk about excited states, e↵ective Hamiltonians actually be-
come naturally time-dependent, because without that the system cannot actually reach the
excited state. See also example 46 below.

• We had seen in week 3, that interesting things happen when matter-waves hit a potential
obstacle, such as the finite square barrier. I had already alerted you to the fact that these
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things becomes much more involved in 3D, since there are now many more directions into
which the matter-wave can be scattered. Since quantum mechanical scattering experiments
are a major tool for unravelling fundamental physics, most notably in atomic, molecular,
nuclear and particle physics, we will go through the basics of that in one section of this
course.

Example 45, Infinite square well potential with a bump: Revisit the online app
http://www.falstad.com/qm1d/ . Select the infinite square well, small mass and narrow
barrier, to get wider energy spacing. Then select “Mouse=Edit function”, and draw a small
pump into the potential energy V (x), see figure below right. E↵ectively we are adding
V (x) = Vbox + Vbump, where Vbox is from Eq. (2.10) and Vbump is the potential we have just
drawn.

|�7 |2 |�7 |2
x x

V, En V, En

Vbump

Vbox left: (left) Usual proba-
bility density in eigenstate
|�7|2 (ignore color) and en-
ergy E7 (red line), see
Eq. (2.18). (right) Proba-
bility density and energies
in new eigenstate of poten-
tial including Vbump.

What we see is that the eigenstates and eigenenergies do change, but not much, and the
statechanges only happens in the region where Vbump is nonzero. Presumably the small
change has to do with the fact that Vbump ⌧ E7, so it seems logical that it does not a↵ect
the state too badly. How can we understand this analytically?

Example 46, Driven quantum dot: Review Assignment5 (QM-I) Q2(c). We had looked
at a particle (e.g. electron) in an infinite square well e.g. quantum dot potential) subject to
a periodically varying external force (e.g. from the electric field of a laser), with Hamiltonian

Ĥ(t) =
p̂

2m
+ V (x̂) + F0x̂ sin (!0t). (6.1)

In the earlier question, you had set up the matrix representation of the
explicitly time-dependent Hamiltonian (see section 3.3) and solved the ensuring TDSE (3.30)
on a computer. We initialize the wavefunction in the ground state  (x, t = 0) = �1(x), from
Eq. (2.18). For slightly more extreme (dimensionless) parameters than taken in the assign-
ment solution (~ = m = 1, a = 4, F0 = 0.05), we find the results below:
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Example continued:
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(left) Population in the ground state (blue) p1(t) = |c1(t)|2, with c1(t) =
R
dx�⇤1(x) (x, t)

and first excited state (orange) p2(t), for !0 = (E2 � E1)/~ (right) The same for !0 =
(E2 � E1)/4/~.
Clearly there is a rather extreme di↵erence between two cases: (i) if the periodic modulation
of the external field has a frequency matching the transition frequency !21 = (E2 � E1)/~
between levels |�2 i and |�1 i we see periodic oscillations of the probability to be in these
two states. This is called resonant driving. (ii) If it does not, almost nothing happens. This
is called o↵-resonant driving.
In this course you will learn how to understand this behavior analytically. These resonance
features are then crucial for almost all material interrogation techniques.

6.5 Revision of QM-I

Before we embark on the program suggested above, we will spend the first week re-viewing the key
points of QM-I. In particular also the last weeks (10,11,12) are really important and exciting and
traditionally might have received less of your attention last semester than warranted. To help you
get you up to speed after the break, please work through the following guide:

(a) Mathematics This is a physics course, but we must use the language of mathematics. In QM-I
you have learnt or deepened the concepts of: Function vector spaces aka Hilbertspaces (sec-
tion 1.5.4), eigenvalue problems of matrices (Eq. (1.15)) and operators (Eq. (1.23)), Hermitian
operators (Eq. (1.24), section 3.4), unitary operators (section 1.5.3, section 3.9), commutators
(Eq. (2.45), Eq. (3.41)), operators as matrices (section 3.3). If when reading this list, you do

not feel reasonably familiar with any keyword, please revisit the relevant section.

(b) Basic structure of quantum mechanics Instead of a well defined position and momen-
tum as in classical mechanics, the quantum mechanical particle is described by a wave function
 (x, t) 2 C. Answer the following questions as a self-check: What is the interpretation/meaning
of this wavefunction? (section 1.4, section 3.6). Why is it complex and what do
complex numbers tell us? (section 1.6.4). What is the value of

R
dx| (x, t)|2

and why? (section 1.6.1, section 1.5.2). What is the importance of a global
complex phase  (x, t) ! ei' (x, t) with ' 2 R? (section 1.6.1). Which equa-
tion governs how the wavefunction changes in time ? (section 1.4). What is
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the meaning of stationary state and how do we find those? (section 1.6.5).
If you could answer all those questions, just proceed. If not, please revisit the links in brackets.

(c) Measurements in quantum mechanics How do we find the probability of a measure-
ment of any observable? (section 3.6). Why do we need operators in quan-
tum mechanics? (section 1.6.2, section 3.6). What happens to the quantum
state while we find a certain measurement result? (section 1.4, section 3.6).
How to we find the mean of a large number of measurements? (section 1.5.2,
section 1.6.2). How do we find the uncertainty or standard deviation of a large number of
measurements? (section 1.6.2 ,section 3.7).

(d) Solutions of the TISE and why we need them For what do we need the TISE?
(section 1.6.5, section 3.6). In which cases and how can we also find time-

dependent information (time-evolution) from the TISE? (section 1.6.5). Which
nice properties do solutions of the TISE have? (section 1.6.5, section 3.4).
List a few practical aspects needed to solve the TISE, how many di↵erent methods do you
know? (weeks 3-5, section 3.3). What is the meaning of degeneracy?

(section 3.4.1).

(e) Solutions of the TDSE and why we need them Why do we need the TDSE in addition
to the TISE? (section 3.6). How many methods to solve the TDSE do you
know? (section 1.6.5, Assigment 3(QM-I), section 3.3). List a few physical
phenomena for which knowing the TISE is not enough (section 6.4).

(f) Uncertainty relationsWhat is the basic mathematical origin of uncertainty relations in quan-
tum mechanics? List an intuitive and a formal reason. (Phy106 weeks5/6,
section 1.6.3, section 3.7). Which uncertainty relations do you know? (section 1.6.3,
section 3.7, section 3.8.1) What is the relation between uncertainty relations and operators
sharing eigenfunctions? (section 3.8) What is special with the energy-time
uncertainty relation, and why do we have to be careful using it? (section 3.8.1)

(g) Quantum e↵ects List at least six quantum mechanical phenomena that are in an essential
way di↵erent from behaviour in classical mechanics. (Hint: section 2.2.1,
section 2.2.4, section 1.4, section 3.6).

(h) Algebraic solutions to quantum problems With which trick can you often avoid finding
all the eigenstates and energies from the TISE, and instead use the action of operators onto
states directly? (section 2.3.1, section 4.4)

(i) Angular momentum How is angular momentum dealt with in quantum mechanics?
(section 4.1.2) Which di↵erent types of angular momentum do you know?
(section 4.1.2, section 4.3, section 4.7.1) Which links between angular mo-

mentum and particle motion do you know from classical mechanics and how are they preserved
in quantum mechanics?

(example 33, example 35) How do we add angular momenta of two particles
? (section 4.8)

(j) Many-Partices or dimensionsWhat changes in the math when you move from a single parti-
cle to many particles? or from one dimension to many dimensions? (section 4.1,
section 5) How can we often tackle those complications to resort back to our easier 1D solu-
tions? (section 1.6.5, section 4.1.1) Explain the concept of indistinguishable
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particles in quantum mechanics? (section 5.1) What is the fundamental con-
sequence of this principle? (Eq. (5.4)) Which classification of particles does
it lead to? (section 5.1)
What is entanglement and why is it interesting? (section 5.2)
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Week 1
PHY 304 Quantum Mechanics-II

Instructor: Sebastian Wüster, IISER Bhopal, 2022

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

6.6 Symmetries and conservation laws

You know what conservation laws are from classical mechanics and QM-I (e.g. Eq. (3.53)). From
classical mechanics you also know that these can be traced back to symmetries of the (classical)
Hamiltonian (i.e. symmetries of “the problem”), using Noether’s theorem. Now that both courses
are complete, let us see briefly how symmetry principles lead to conservation laws in quantum
mechanics, exactly as they do in classical mechanics. Essentially you think of the contents of this
section as the quantum mechanical version of Noether’s theorem.

First let us remind ourselves what a symmetry of a system means:

Example 47, Continous and discrete spatial symmetries: A symmetry of a system
is a coordinate transformation that leaves the system unchanged.

left: (left) For example the
square shape has a discrete ro-
tational symmetry: We can ro-
tate the square (or the coordi-
nate system)s by ' = n⇡/2 with
integer n and you would not be
able to tell the di↵erence. It also
has two mirror symmetries: flip-
ping the x direction and flipping
the y direction.

(right) In contrast, the circle has a continuous rotational symmetry. You can rotate
it by any angle ' and would not be able to tell the di↵erence.

• The above should remind you of what you intuitively know. If you want to make it more
formal, the shapes are defined by a sub-set of coordinates, e.g. {�a < x < a and �a < y < a}.
Now e.g. the mirror symmetry ⇧x implies that this set of coordinates is unchanged under the
coordinate transformation x $ x0 = �x, y0 = y.

Through the next few sections, we will look at several important symmetry operations, and how
they a↵ect a quantum state (wavefunction) and an operator. The main objective will be to define
“symmetry of a quantum mechanical system = symmetry of the Hamiltonian operator”.
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6.6.1 Translations

We want to translate a wavefunction in space, i.e. move it without changing its shape.

left: This is illustrated on the left.
There is two viewpoints to shifting
the function. In the active trans-
formation, we keep our coordi-
nate system unchanged and write a
function  (x� a) instead of  (x),
which is shifted by a to the right.

In the passive transformation, we redefined our coordinate x0 = x� a, and then write the original
function  (x0) in terms of the new coordinate.

For performing the shift that we define the

Translation operator T̂ (a) that shifts a wavefunction  (x) by a to the right.

T̂ (a) (x) =  ̃(x) =  (x� a). (6.2)

It turns out we can write

T̂ (a) = e�ia~ p̂ (6.3)

We thus say the momentum operator p̂ is the generator of translations.

• Proof: We use the Taylor expansion of  (x� a) around the point x

 (x� a) =
1X

n=0

(�a)n

n!

d

dx
 (x) (6.4)

=
1X

n=0

1

n!

✓
�ia

~ p̂

◆n

 (x) = e�ia~ p̂ (x). (6.5)

• The translation operator is unitary T̂ (a)�1 = T̂ (�a) = T̂ †.

We had seen in section 3.9 that we can choose to work with time-evolving states and time-
independent operators as well as the reverse, since the only thing that matters in the end is the
time evolution of expectation values. The same approach can be taken for translations. We defined

a translated operator ˆ̃O as one that has the same expectation value in the untranslated state | i,
as the original operator Ô in the translated state |  ̃ i:

h | ˆ̃O| i = h  ̃ |Ô|  ̃ i = h |T̂ †(a)ÔT̂ (a)| i. (6.6)

For the second equality we have used Eq. (6.2) and Eq. (3.23) [newly added]. From Eq. (6.6) we
can now infer the form of a

146



Shifted operator

ˆ̃O = T̂ †(a)ÔT̂ (a). (6.7)

Example 48, Shifted position operator: Let us test what shifted operator means,
by shifting the position operator x̂. We can do this in two di↵erent ways. The first one
is described in Gri�th example 6.1, using (6.2) and a test function. The second one, uses
Assignment 6, Q2.
According to (6.7), we have

ˆ̃x = T̂ †(a)x̂T̂ (a)
Eq. (6.3)

= ei
a

~ p̂x̂e�ia~ p̂ = · · · (6.8)

In Assignment 6, you had shown that e�ÂB̂e��Â = B̂ + �
⇥
Â, B̂

⇤
for two operators Â and

B̂ that commute with their commutator. Using Â = p̂, B̂ = x̂ and � = ia
~ , this matches

(6.8). Also, since
⇥
x̂, p̂

⇤
= i~ is just a number, the operators clearly satisfy the requirement

to commute with their commutator. Thus we can write

· · · = x̂+
ia

~
⇥
p̂, x̂

⇤
| {z }
=�i~

= x̂+ a. (6.9)

This agrees with what you find with Gri�th’ method. We essentially just re-express the
position coordinate in the shifted coordinate system shown in the figure at the beginning of
section 6.6.1.

We are now finally in the position to define

Translational symmetries of a quantum system We say the system is invariant under
a translation by a, if its Hamiltonian is invariant:

ˆ̃H = T̂ †(a)ĤT̂ (a)
!
= Ĥ. (6.10)

Since T̂ †(a) = T̂�1 we can rewrite this as

⇥
Ĥ, T̂ (a)

⇤
= 0, (6.11)

i.e. the Hamiltonian commutes with the translation (symmetry) operator.

• If we write the Hamiltonian as Ĥ = p̂2

2m + V (x̂), we can show easily that ˆ̃H = p̂2

2m + V (x̂+ a).
For the potential we use Eq. (6.9) and to see that the momentum does not shift we can use
(6.3) (exercise).

• A system thus has a translation symmetry, if its potential energy does.

Let’s look at two di↵erent important cases:

147



Continuous translational symmetry:

Some systems are invariant under any translation a, which implies that the potential vanishes
or is constant. In particular that implies that they are invariant under any infinitesimally small
translation, with a infinitesimally small. In that case we can expand (6.3) to T̂ (a) = e�ia~ p̂ ⇡ 1�ia~ p̂,

which means that (6.11) becomes equivalent to
⇥
Ĥ, p̂

⇤
= 0. But from Eq. (3.53) we know that this

implies also the conservation of momentum. We thus have shown that

Translation invariant Hamiltonians imply momentum conservation

• This is essentially the same statement that you get in classical mechanics using Noether’s
theorem for a continuous translational symmetry.

• In quantum mechanics we might be tempted to distinguish two (seemingly) di↵erent state-
ments of “conservation of an observable Ô”: (i) We could demand that the expectation value

does not change. This is guaranteed from
⇥
Ĥ, Ô

⇤
= 0 using Eq. (3.53). (ii) We could demand

that the probability pk of every possible measurement outcome ok does not change. In fact

this is also guaranteed by
⇥
Ĥ, Ô

⇤
= 0. Proof: The probability to measure ok in the quantum

state | (t) i is given by

pk = |h'k | (t) i|2, (6.12)

where |'k i is the eigenstate of Ô with eigenvalue ok (see postulate III in section 3.6). Accord-
ing to Eq. (1.70) we can write the time-dependent state as | (t) i =

P
n cn(0)e

�iEnt/~|�n i,
where |�n i is an eigenstate of the Hamiltonian. However since

⇥
Ĥ, Ô

⇤
= 0, according to

Eq. (3.48) these have shared eigenfunctions, so we can identify |�n i = |'n i, such that

pk = |h'k | (t) i|2 =

�����h'k |
X

n

cn(0)e
�iEnt/~|'n i

�����

2

=

�������

X

n

cn(0)e
�iEnt/~ h'k |'n i| {z }

�nk

�������

2

= |ck(0)e�iEkt/~|2 = |ck(0)|2, (6.13)

which hence also does not change in time.

Discrete translational symmetry:

Suppose the potential has a discrete translational symmetry, which means that V (x + a) = V (x)
is true for some special choice of a, but not for all a. Let’s call this a = d. An example would be
V (x) = V0 cos2 (⇡x/d), see also figure in example 49 below. We know from (6.11) that in this case⇥
Ĥ, T̂ (d)

⇤
= 0 and we know from section 3.8 that we can thus choose all eigenfunctions �(x) of the

Hamiltonian, such that they are simultaneously eigenfunctions of the translation operator:

Ĥ�(x) = E�(x), and T̂ (d)�(x) = ��(x), (6.14)

for some �. From (6.2) we can write T̂ (d)�(x) = �(x � a) = ��(x). Since T̂ (d) is unitary, its
eigenvalues fulfill |�|2 = 1 (exercise, assignment), hence they can be written as � = ei' for real ',
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thus

�(x� a) = ei'�(x). (6.15)

It turns our this is equivalent to

Bloch’s theorem The eigenstates �(x) of a particle in a potential V (x + d) = V (x) with
periodicity d take the form

�q(x) = eiqxu(x), (6.16)

where u(x) = u(x � d) is a periodic function, with the same period as the potential. q is
called the crystal momentum.

• Proof: It is clear that Eq. (6.15) follows from Eq. (6.16). In the other direction, let us
write �(x) = eiqxu(x) for unknown u(x), which is clearly possible. Then u(x � d) = �(x �
d)e�iq(x�d) Eq. (6.15)

= ei('+qd)�(x)e�iqx which is equal to u(x) if we set ' = �qd. q is called
the crystal momentum.

Example 49, Electrons in a crystal lattice: The simplest model of electrons in a solid
material are non-interacting electrons that feel a periodic potential due to the crystal ions
in the material.

left: An electron (orange dot), mov-
ing in the periodic potential V (x)
(black) created by the screened solid-
crystal ions p+ (black •), which are
periodically arranged with period d.
We can thus use Bloch’s theorem
Eq. (6.16) to find electronic states
u(x) which we now need to find only
over one period x 2 [0, d] of the lat-
tice.

To find actual energies we still have to solve TISE in terms of u(x). What we find in this case
is a bandstructure: Energies En(q) cover certain ranges of energies as a function of q (bands)
with certain other ranges of energies forbidden (gaps). This is in contrast to the free particle
in section 2.1, where you find a matching q to generate every energy E(q) = ~2q2/(2m).

6.6.2 Parity

Besides the discrete translation we just saw, other discrete symmetries we had already seen earlier
are mirror symmetries.
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left: The parity operation just mirrors the
function at the origin, see Eq. (6.17). Here
we show an example of a function  (x)
(solid) that is not parity symmetric. Hence
its mirror image  (�x) (dashed) looks dif-
ferent.

A mirror symmetry corresponds to an inversion of space, which we formalize using the

Parity transformation operator ⇧̂ which acts on a wavefunction  as

⇧̂ (x) =  ̃(x) =  (�x). (1D)

⇧̂ (r) =  ̃(r) =  (�r). (3D) (6.17)

• The parity operator is Hermitian (exercise) and its own inverse ⇧̂ = ⇧̂�1. Similar to Eq. (6.7),

an operator transforms as ˆ̃O = ⇧̂Ô⇧̂ under parity.

• E.g. using the position space representation of Eq. (6.6) (integration for the scalar product),
you can then show that the position and momentum operators transform as ⇧̂r̂⇧̂ = �r and
⇧̂p̂⇧̂ = �p̂.

• If a Hamiltonian has an inversion symmetry, which means ⇧̂Ĥ⇧̂ = Ĥ, we again know that
its eigenfunctions are also eigenfunctions of the parity operator. This is typically the case if
the potential is symmetric V (r) = V (�r). Eigenfunctions of the parity operator are the odd
and even functions, with eigenvalues (-1) and (+1) respectively. Together we see the result
of Assignment 3 Q1b in QM-I, in a more elegant way.

• Using Eq. (3.53) you can show that the parity of a wavefunction is conserved if the Hamilto-
nian has an inversion symmetry (exercise). This means that a symmetric wavefunction will
remain symmetric as time goes on, and an anti-symmetric one will remain anti-symmetric.

• In 3D there are a few more mirror symmetries, the complete inversion symmetry of space used
above: ⇧̂r̂⇧̂ = �r, or separate inversions of only some of the cartesian axes (i.e. x ! �x
without changing y and z).

• An important example of a parity symmetric Hamiltonian is the Hydrogen Hamiltonian (4.72).
We thus know from the discussion above, that all Hydrogen wavefunctions (4.91) must have
a definite symmetry under the parity operation. You can verify �n`m(r) = (�1)`�n`m(�r).
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Example 50, Dipole selection rules: You already were told in PHY106 (weeks 7+10)
that Hydrogen atoms can make transition between di↵erent electronic states �n`m as in
Eq. (4.91) if they interact with light. In a preview of PHY402 “Atomic and Molecular
physics”, these transitions are mainly governed by matrix elements of the electric dipole
operator of the atom d̂ = �er̂. a Transitions are possible if

M = h�n0`0m0 |(�er̂)|�n`m i 6= 0. (6.18)

By smartly inserting 1 = ⇧̂⇧̂ at two places we can show

M = h�n0`0m0 |⇧̂ ⇧̂(�er̂)⇧̂| {z }
=er̂

⇧̂|�n`m i| {z }
=(�1)`|�n`m i

= h�n0`0m0 |(�1)`
0
(er̂)(�1)`|�n`m i = M(�1)`+`0+1.

(6.19)

This only allows M 6= 0 if `+`0+1 is even, hence ` 6= `0: Transition are only possible (likely)
between states of di↵erent parity (di↵erent `). In PHY402 you will learn the stronger rule
|`� `0| = 1.
An even simpler result is found for n = n0, ` = `0 m = m0, in which case M is
the expectation value of the electric dipole (i.e. the permanent electric dipole in the state
|�n`m i. It vanishes due to (6.19), hence Hydrogenic states do not have a permanent dipole
moment (see also tutorial 6(QM-I), Stage3)

aIt is the electric field of the light that has the dominant e↵ect. Since atoms are neutral, the highest order
interaction is with the electric dipole.

6.6.3 Rotations

In higher dimensions (2D, 3D), we have an additionally coordinate transformation to translations
and inversions, called “rotations”. This is sketched below for a coordinate rotation in 2D:

left: We draw an original function of two
variables  (x, y) (left mountain), and then
the same function at rotated coordinates
 (x0, y0) (right mountain). This is easiest
expressed in polar coordinates  (r,') !
 (r,'�↵), but we could rotate the cartesian
coordinates as well.

We follow the same approach as in section 6.6.1 to formalise transformations under rotations of
wavefunctions. We define the
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Rotation operator for a rotation about the z-axis by an angle ↵ as

R̂z(↵) (r, ✓,') =  (r, ✓,'� ↵) (6.20)

This time we can write it as

R̂z(↵) = e�i↵~ L̂z (6.21)

We thus say the angular momentum operator L̂z is the generator of
rotations about the z-axis.

• The reasoning behind Eq. (6.21) is similar to that for Eq. (6.3) (exercise).

• More generally we find that rotation around an arbitrary axis n changes the wavefunction by

R̂n(↵) = e�i↵~ n·L̂, (6.22)

thus the angular momentum operator L̂ is the generator of rotations.

• Using the same argumentation as in section 6.6.1, we now see that a Hamiltonian is rotation-
ally symmetric R̂n(↵)†ĤR̂n(↵) = Ĥ, if Ĥ commutes with L̂, and according to Eq. (3.53) in
that case angular momentum is conserved. This is again the same result that we obtain in
classical mechanics, based on Noether’s theorem for continuous rotational symmetries.

6.6.4 Time translations

We had already seen in section 3.9, that for cases with a time-independent Hamiltonian (that means
the system is “translation invariant in time”), the operator that maps a wavefunction from time t0
to time t0 + t is the time evolution operator (see Eq. (3.60))

Û(t, 0) = e�i Ĥ~ t. (6.23)

If we compare this with Eq. (6.3) and Eq. (6.21), it makes sense to call the Hamiltonian the
generator of time translations. Similarly again to classical mechanics, we can show using Eq. (3.53)
that energy is conserved, if the Hamiltonian is not explicitly time dependent, which means the
system is time translation invariant.

6.6.5 Symmetries and Degeneracy

We had discussed degeneracy in section 3.4.1. Very often, degeneracy in the spectrum of a Hamil-
tonian Ĥ can be traced back to its symmetries. Specifically

Symmetries that lead to degeneracy If a Hamiltonian has at least two non-commuting
symmetries, its spectrum must contain degenerate states.

152



• Proof: Let Q̂ and ⇤̂ be the generators of the symmetry (e.g. like the momentum operator
for translations in section 6.6.1). We had seen that them generating a symmetry implies⇥
Ĥ, Q̂

⇤
= 0 and

⇥
Ĥ, ⇤̂

⇤
= 0, but we assume

⇥
Q̂, ⇤̂

⇤
6= 0. Let’s pick an eigenstate |�n i of the

energy Ĥ|�n i = En|�n i, then

Ĥ
h
Q̂|�n i

i
= Q̂ Ĥ|�n i| {z }

En|�n i

= En

h
Q̂|�n i

i
. (6.24)

Thus Q̂|�n i is also an eigenstate of Ĥ with eigenvalue En (and we can show the same thing
for ⇤̂|�n i. We have not yet show that the eigenvalue En is degenerate, since all three states,

|�n i, Q̂|�n i and ⇤̂|�n i might be the same state. Recall from section 1.6.1 that “same state”
still allows the wavefunctions to di↵er by a complex global phase. However if Q̂|�n i ⇠ |�n i
and ⇤̂|�n i ⇠ |�n i then |�n i also was an eigenfunction of Q̂ and of ⇤̂. If this is true for all
n, then Q̂ and ⇤̂ share a set of eigenfunctions, in which case we know from section 3.8 that⇥
Q̂, ⇤̂

⇤
= 0, which contradicts our assumption. Hence there has to be at least one |�n i for

which either Q̂|�n i 6/ |�n i or ⇤̂|�n i 6/ |�n i or both, and thus there is a degeneracy.

Example 51, Single symmetry: Consider the 1D harmonic oscillator Ĥ = p̂2

2m+ 1
2m!

2x̂2,

see section 2.3. The Hamiltonian is symmetric under parity ⇧̂, see section 6.6.2, which
means

⇥
Ĥ, ⇧̂

⇤
. However there is no second symmetry. Hence all eigenfunctions of Ĥ are

simultaneous eigenfunctions of ⇧̂, which means they are either symmetric or anti-symmetric,
compare Eq. (2.64). But this means that ⇧̂|�n i is always the same state as |�n i and there
is no degeneracy. Hence the words “ at least two” above are very important.

Example 52, Multiple symmetries: Consider the isotropic 2D harmonic oscillator

Ĥ =
p̂2x
2m

+
p̂2y
2m

+
1

2
m!2(x̂2 + ŷ2). (6.25)

This has many more symmetries: ⇧̂x (x $ �x), ⇧̂y (y $ �y), ⇧̂ (r $ �r) and rotations
R̂z(↵) about any angle ↵, see section 6.6.3. We had found the eigenstates in section 4.1.1
(just remove the z dimension there), and found an energy Enx,ny

= ~!(nx + ny + 1). Thus
most states are degenerate (e.g. nx = 1, ny = 0 has the same energy as nx = 0, ny = 1.

6.7 Classical foundations of quantum mechanics [BONUS]

Now that (most of) you have also completed the course in classical mechanics (PHY303), it might
be interesting to briefly look at the deep links between the formalisms in both cases. These were
crucial for the development of quantum mechanics and can still help its deeper understanding, while
there is not usually enough time in a modern syllabus to look at them in the depth they deserve.

I compiled a very brief summary of the links in the notes on classical mechanics (week 11, section
4.6.).
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