
PHY 303, I-Semester 2023/24, Tutorial 6 solution

Stage 1 (Atoms in a waveguide) At very low temperatures, it is possible to trap
atoms in a laser-beam through a technique called optical trapping. Assuming a
laser beam that is axially symmetric around the z-axis as shown below, we can
approximately write the potential as:

V (r) =
1

2
mω2

⊥
(
x2 + y2

)
. (1)

(note that it does not depend on z).

Figure 1: The atom (blue) is attracted to high laser intensity (pink), which drops with
r =

√
x2 + y2, thus the laser beam along the z axis forms a waveguide for the atom, in

which it can move freely along z (arrows).

(a) Adapt the discussion of week8, section 4.1.1. to this scenario: What are the
three one-dimensional TISEs which are equivalent to the 3D one? What
form do the eigenstates take? Which quantum numbers control them and
what do they physically imply. Give an equation for the energy.
Solution: The 3D TISE with inserted potential reads

Eϕ(r) =

(
− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

2
mω2

⊥
(
x2 + y2

))
ϕ(r) (2)

Since we can write this as a sum of x,y,z terms, we make the usual fac-
torisation Ansatz ϕ(r) = ϕnx(x)ϕny(y)ϕnz(z). Inserting this into (2) and
reshuffling terms, we can write this as

Eϕnx(x)ϕny(y)ϕnz(z) =

[(
− ℏ2

2m

∂2

∂x2
+

1

2
mω2

⊥x
2

)
ϕnx(x)

]
ϕny(y)ϕnz(z)

+

[(
− ℏ2

2m

∂2

∂y2
+

1

2
mω2

⊥y
2

)
ϕny(y)

]
ϕnx(x)ϕnz(z)

+

[(
− ℏ2

2m

∂2

∂z2

)
ϕnz(z)

]
ϕnx(x)ϕny(y). (3)
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We can now move all the x-dependent pieces on the LHS and yz dependent
ones on the RHS, and then conclude that LHS=C=RHS using separation of
variables (see section 1.6.5.):(
− ℏ2

2m
∂2

∂x2 +
1
2
mω2

⊥x
2
)
ϕnx(x)

ϕnx(x)
= const = E −

(
− ℏ2

2m
∂2

∂y2
+ 1

2
mω2

⊥y
2
)
ϕny(y)

ϕny(y)

−

(
− ℏ2

2m
∂2

∂z2

)
ϕnz(z)

ϕnz(z)
. (4)

Doing the same again to separate the y and the z dependence, we finally
reach three separate TISEs for each dimension:

Enxϕnx(x) =

− ℏ2

2m

∂2

∂x2
+

1

2
mω2

⊥x
2︸ ︷︷ ︸

≡Vx(x)

ϕnx(x) (5)

Enyϕny(y) =

− ℏ2

2m

∂2

∂y2
+

1

2
mw2

⊥y
2︸ ︷︷ ︸

≡Vy(y)

ϕny(y) (6)

Enzϕnz(z) =

− ℏ2

2m

∂2

∂z2
+ 0︸︷︷︸

=Vz(z)

ϕnz(z) (7)

such that E = Enx + Eny + Enz . Eq.5 and Eq. 6 are the TISE of the
harmonic oscillator, hence we know that ϕnx(x) and ϕny(y) are the usual 1D
eigenfunctions of the harmonic oscillator. We can thus use the discussion
of section 2.1. to write the eigenstates of Eq. (7) as

ϕkz(z) = N eikzz, (8)

where k2z =
2mE
ℏ2 . Alltogether our 3D eigenstates are thus

ϕ(r) = N eikzzϕnx(x)ϕny(y), (9)

with two discrete indices nx and ny and one continuous one (wavenumber)
kz. Equation for the energy along x and y:

Enx =

(
nx +

1

2

)
ℏω⊥,

Eny =

(
ny +

1

2

)
ℏω⊥
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Equation for the energy along along z:

Enz =
ℏ2k2z
2m

(b) Now consider only states for which the energy difference ∆E to the ground-
state is ∆E ≪ ℏω⊥, which subset of states from (a) does this condition
select?
Solution: As per energy equation found in (a)

E =

(
nx +

1

2

)
ℏω +

(
ny +

1

2

)
ℏω +

ℏ2k2z
2m

so the ground state (lowest energy state) has nx = 0, ny = 0 and kz = 0.
The condition given thus prohibits nx > 0 or ny > 0, only nx = ny = 0

is possible. Additionally ℏ2k2z
2m

≪ ℏω⊥, which constrains kz. Inserting the
explicit harmonic oscillator wavefunctions thus yields

ϕkz(r) = N e
− x2

2σ2
⊥ e

− y2

2σ2
⊥ eikzz (10)

with σ⊥ =
√
ℏ/(mω⊥).

(c) Suppose you want to describe an atom in this waveguide, localized near
a position z = z0 in the waveguide and moving with a velocity vz in the
z-direction. Which 3D wavefunction would describe such an atom?
Solution: A 3D gaussian would describe such an atom moving along z with
width σz centered on z0 given by

Φ(r) =
1

(πσ2
⊥)1/4

e
− x2

2σ2
⊥

1

(πσ2
⊥)1/4

e
− y2

2σ2
⊥

1

(πσ2
z)1/4

e−
(z−z0)

2

2
σ2
ze−ikz(z−z0), (11)

where kz = mvz/ℏ and we have taken our known normalisation constants
for Gaussian wavefunctions or the oscillator ground-state. Note that we
can construct this as a wavepacket out of planewaves in the z-direction (10)
exactly as we did in week 5 (just multiplying everything with the transverse
oscillator ground-state in the x and y directions).

(d) Rewrite the 3D expectation value of the operator for the gravitational po-
tential energy Vgrav in a state such as what you found in (c). Lets consider
two cases

(i) Vgrav(r) = mgz (direction of gravity along z), (12)

(ii) Vgrav(r) = mgx (direction of gravity along x). (13)
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You do not need to do any non-trivial 1D integrations. Hint: Trivial means
the answer is 0 or 1.
Solution: (i) The 3D expectation value is Epot =

∫
d3r Φ∗(r)Vgrav(r)Φ(r)

into which we have to insert Φ(r) from Eq. (11). This starts off as

Epot =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz[

1

(πσ2
⊥)

1/4
e
− x2

2σ2
⊥

1

(πσ2
⊥)

1/4
e
− y2

2σ2
⊥

1

(πσ2
z)

1/4
e−

(z−z0)
2

2
σ2
zeikz(z−z0)

]
mgz

×

[
1

(πσ2
⊥)

1/4
e
− x2

2σ2
⊥

1

(πσ2
⊥)

1/4
e
− y2

2σ2
⊥

1

(πσ2
z)

1/4
e−

(z−z0)
2

2
σ2
zeikz(z−z0)

]
(14)

Luckily we can factor this into individual integration involving only a single
cartesian coordinate

Epot =

[∫ ∞

−∞
dx

1

(πσ2
⊥)

1/2
e
− x2

σ2
⊥

]
︸ ︷︷ ︸

=
∫
dx|ϕ0(x)|2=1

[∫ ∞

−∞
dy

1

(πσ2
⊥)

1/2
e
− y2

σ2
⊥

]
︸ ︷︷ ︸

=
∫
dy|ϕ0(y)|2=1

[∫ ∞

−∞
dz

1

(πσ2
⊥)

1/2
e
− z2

σ2
zmgz

]

(15)

In the line above, we see that the x and y integration just give one as shown,
due to the normalisation of the oscillator ground-states in the x and y di-
rection. Thus in the end we reach

⟨Vgrav(r)⟩ =
∫ ∞

−∞
dz mgz

[
1

(πσ2
⊥)

1/2
e−(z−z0)

2/σ2
z

]
, (16)

which for very small σz will be approximately mgz0 (imagine the Gaussian
approaches a delta-function or make a drawing).

Following similar steps for the potential (ii) we end up with

Epot =

[∫ ∞

−∞
dx

1

(πσ2
⊥)

1/2
e
− x2

σ2
⊥mgx

][∫ ∞

−∞
dy

1

(πσ2
⊥)

1/2
e
− y2

σ2
⊥

]
︸ ︷︷ ︸

=
∫
dy|ϕ0(y)|2=1

[∫ ∞

−∞
dz

1

(πσ2
⊥)

1/2
e
− z2

σ2
z

]
︸ ︷︷ ︸

=1

=

[∫ ∞

−∞
dx

1

(πσ2
⊥)

1/2
e
− x2

σ2
⊥mgx

]
(17)

The last remaining integral is zero since the integrand is odd, hence now
Epot = 0.

Stage 2 (Angular momentum)

(i) How can you prove in quantum mechanics that angular momentum is
conserved if the potential is spherically symmetric?
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Solution: We can see that the Hamiltonian commutes with (all three
components of) the Angular momentum operator L̂. Hence angular mo-
mentum is conserved according to Eq. (3.50). The easiest way to see the
initial statement, is to re-write the Hamiltonian in terms of the square of
the Angular momentum operator as in Eq. (4.37), and then use Eq. (4.24)

(ii) Is angular momentum also conserved if the potential is not spherically
symmetric? Why/why not?
Solution: No. Since then we cannot write the Hamiltonian such that it
only depends on L̂2, and

[
L̂k, L̂k

]
may be nonzero.

(iii) Show the commutator [
L̂x, L̂y

]
= iℏL̂z. (18)

Do this once based on your knowledge of the commutators of r̂k and p̂ℓ, and
once from the definitions via partial derivatives applied onto a testfunction.

Solution: We have that

L̂x = −iℏ
(
y
∂

∂z
− z

∂

∂y

)
,

L̂y = −iℏ
(
z
∂

∂x
− x

∂

∂z

)
,

L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
. (19)

Hence applying the commutator onto a testfunction ψ(r) gives[
L̂x, L̂y

]
ψ(r) = (−iℏ)2

[(
y
∂

∂z
− z

∂

∂y

)(
z
∂

∂x
− x

∂

∂z

)
−
(
z
∂

∂x
− x

∂

∂z

)(
y
∂

∂z
− z

∂

∂y

)]
ψ(r)

= From here on, use the product rule (20)

Doing that, we arrive at[
L̂x, L̂y

]
ψ(r) = (−iℏ)2

(
y
∂ψ

∂x
− x

∂ψ

∂y

)
ψ(r)

= iℏL̂zψ(r)

Since this is true for any testfunction, we conclude the operator identity[
L̂x, L̂y

]
= iℏL̂z.

If we directly want to use the known commutation relation
[
xk, pm

]
= iℏδkm

between position and momentum operators, we start instead with the definitions

Lx = ypz − zpy

Ly = zpx − xpz. (21)
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Then we can write[
L̂x, L̂y

]
= [ypz − zpy, zpx − xpz]

commutator bi-linear
= [ypz, zpx]− [ypz, xpx]− [zpy, zpx] + [zpy, xpz]

Eq. (3.41)
= y [pz, z] px + z [y, px] pz − y [pz, x] px − x [y, px] pz

− z [py, z] px − z [z, px] py + z [py, x] pz + x [z, pz] py

= (iℏ)(−ypx + xpy)

= iℏL̂z

In the third equality there would be twice as many terms after applying (3.41),
but haven’t written any such as

[
xk, xm

]
that are more obviously zero.

Stage 3 (Pictures of time dependence)

(i) Convince yourself that for time-independent Hamiltonian, |Ψ(t) ⟩ =
Û(t)|Ψ(0) ⟩ solves the TDSE. Here Û(t) = exp [−iĤt/ℏ] is the
time-evolution operator or propagator. Discuss what is meant by expo-
nential of an operator and how we could possible find this in practice.

(ii) Write the time-dependence of a generic expectation value ⟨Ψ(t) |Ô|Ψ(t) ⟩
and thus convince yourself that instead of assuming a time-dependent
states and time-independent operator, we could also work with a time-
independent state and time-dependent Operator. Which is that operator?

Solution: See lecture section 3.9.1.

Stage 4 (Three-dimensional wavefunctions) Consider a radially symmetric problem,
such that an eigenstate of the Hamiltonian takes the form ϕ(r) = R(r)Y (θ, φ).

(i) Why do we know that the eigenstates takes this form?
Solution: Since we know that for a radially symmetric problem[
Ĥ, L̂2

]
=

[
Ĥ, L̂z

]
= 0, we know that eigenfunctions are simultane-

ously eigenfunctions of the Hamiltonian as well as L̂2 and L̂z. In week 10
we had derived that such eigenfunctions can be written of the form above,
in particular that the Y (θ, φ) separately are the eigenfunctions of L̂2 and
L̂z.

(ii) Suppose the particle carries a charge q. Then the operator for its electric
dipole is

d̂ = qr̂. (22)

How can you find the expectation value of this dipole? What integration(s)
do you have to do? Hint: You can actually find the answer without any
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nasty integrations, but the idea here is to write all the steps converting the
3D integration into separate 1D ones, and only then “see” the answer.
Solution: The expectation value involves a 3D integration again and its
result is a 3D vector:

⟨ d̂ ⟩ =
∫
d3r ϕ∗(r)d̂ϕ(r)

= q

∫∫∫
drdθdφ r2 sin θ

[ r sin θ sinφ
r sin θ cosφ
r cos θ

 R(r)2Y ∗
l,m(θ, φ)Yl,m(θ, φ)

]

≡

 dx
dy
dz

 (23)

I the end we thus find that ⟨d⟩ = 0. Let us write dx tidies up by integration
variables

dx = q

[∫ ∞

0

dr r2R(r)2
] [∫ π

0

dθ sin2 θN 2Pm
ℓ (cos θ)

] [∫ 2π

0

dφ sinφ

]
(24)

We have used that |Y |2 is independent of φ [see Eq. (4.51)], and written
the shorthand N for the normalisation factor and phase factor of spherical
Harmonnics. We can easily do the φ integration, which gives zero, hence
dx = 0. Similarly dy = 0. For dz it is the θ integration that gives zero
(exercise).

A shorter way to see this, is to realize that all Hydrogen states have a defi-
nite parity. That means that ϕ(r) = ±ϕ(−r). To convince yourself of that,
note that in spherical polar coordinates r → −r implies r → r (unchanged),
θ → π − θ and φ → φ − π. We have that Y m

ℓ (θ, φ) ∼ eimφPm
ℓ (cos θ).

Since cos θ → − cos θ under the above parity transformation, and eimφ →
eimφe−imπ we finally see that Y m

ℓ (θ, φ) → Y m
ℓ (θ, φ)(−1)|m|(−1)o, where o

is the order of the associated Legendre function (note these are either even
or odd).

Why does this help us? Because ϕ(r) = ±ϕ(−r) implies |ϕ(r)|2 =
+|ϕ(−r)|2. We thus directly see that ⟨ d̂ ⟩ =

∫
d3r ϕ∗(r)d̂ϕ(r) = 0, since

each piece of the integration at r is cancelled by the one at −r.

The physical meaning of all of this, is that Hydrogen in an eigenstate
does not have a permanent dipole moment.
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