
PHY 303, I-Semester 2023/24, Tutorial 5 solution

Stage 1 (Postulates) Consider an arbitrary time-independent Hamiltonian, with eigen-
value problem

Ĥ|ϕn ⟩ = En|ϕn ⟩, (1)

where there is no degeneracy (or En ̸= Em for n ̸= m). The system is in the
quantum state

|Ψ ⟩ = 1

2
|ϕ1 ⟩+

1√
2
|ϕ2 ⟩+

1

2
|ϕ3 ⟩ (2)

and assume E1 = 1 eV, E2 = 2 eV, E3 = 8 eV.

(a) Check that the state is correctly normalized.
Solution: We have, |Ψ ⟩ = 1

2
|ϕ1 ⟩+ 1√

2
|ϕ2 ⟩+ 1

2
|ϕ3 ⟩, where |ϕn ⟩ are eigen-

states of Hamitonian Ĥ. Now to check the normalization of |Ψ ⟩, we com-
pute the inner product ⟨Ψ|Ψ⟩:

⟨Ψ|Ψ⟩ =

{
1

2
⟨ϕ1|+

1√
2
⟨ϕ2|+

1

2
⟨ϕ3|

}{
1

2
|ϕ1⟩+

1√
2
|ϕ2⟩+

1

2
|ϕ3⟩

}
, (3)

from the orthonormality relation of the eigenstates , ⟨ϕm|ϕn⟩ = δmn we can
simpilify the above as

⟨Ψ|Ψ⟩ =
1

4
+

1

2
+

1

4
= 1.

Hence, the state is normalized.

(b) We now repeatedly create the state (2) and then measure the energy of the
system. Find the expectation value of this measurement, all possible results
of of a single measurement and the most likely result of a measurement.
With which probability will a single measurement result be the same as the
expectation value?
Solution: The superposition state only contains the eigenstates |ϕ1 ⟩, |ϕ2 ⟩,
|ϕ3 ⟩, hence the only possible results for the energy measurement are E1, E2

and E3. If we denote by p1, p2, and p3 the probabilities of measuring energy
eigenvalues E1, E2, and E3 respectively, we can calcluate all possible results
of a single measurements with corresponding probabilities using:

pn = |cn|2 = |⟨ϕn|Ψ⟩|2 (4)

p1 =
1

4
, E1 = 1eV

p2 =
1

2
, E2 = 2eV

p3 =
1

4
, E3 = 8eV.

(5)
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Now we see that E2 is the most likely outcome of the measurement with the
highest probability.

To find the expectation value of energy, we use

⟨ Ĥ ⟩ = ⟨Ψ |Ĥ|Ψ ⟩ =
{
1

2
⟨ϕ1|+

1√
2
⟨ϕ2|+

1

2
⟨ϕ3|

}
Ĥ

{
1

2
|ϕ1⟩+

1√
2
|ϕ2⟩+

1

2
|ϕ3⟩

}
, (6)

=

{
1

2
⟨ϕ1|+

1√
2
⟨ϕ2|+

1

2
⟨ϕ3|

}{
1

2
E1|ϕ1⟩+

1√
2
E2|ϕ2⟩+

1

2
E3|ϕ3⟩

}
(7)

which due to orthonormality of the eigenvectors

⟨E ⟩ = p1E1 + p2E2 + p3E3 =
13

4
eV. (8)

This is of course also the mathematical probability theory result for the ex-
pectation value of realisations of a random variable with three outcomes Ek

and probabilities pk.

Note that the expectation value is not one of the possible measurement outcomes,
thus the probability that a single measurement result is the same as the
expectation value is zero.

(c) Suppose in a first measurement we have found energy E2. Now we do a
second measurement on the same system without re-initialising the quantum
state. Answer all the questions in (b) again.
Solution: In a first measurement, if the measurement result is E2, the state
is collapsed to eigenstate |ϕ2 ⟩ i.e. now |Ψ ⟩ = |ϕ2 ⟩. So, if we perform a
second measurement on the same system without re-initialising the state, we
get the energy E2 with the probability 1, and hence, it will be the expectation
value (do the same calculation as above) and most likely value of the energy.
In this case of course the probability that a single measurement result is the
same as the expectation value is one.

(d) Now consider the Hermitian operator

Ô =
∞∑
n=0

on (|ϕn+1 ⟩⟨ϕn |+ |ϕn ⟩⟨ϕn+1 |) . (9)

with some constants on. What is the expectation value of measurements of
this operator in the state (2)?
Solution: The operation of Ô on state |Ψ ⟩ can be expressed as

Ô|Ψ ⟩ =
∑∞

n=0 on (|ϕn+1 ⟩⟨ϕn |+ |ϕn ⟩⟨ϕn+1 |) |Ψ ⟩
(10)

Using orthonormality of the states ⟨ϕm|ϕn⟩ = δmn, we can simplify the out-
come as

Ô|Ψ ⟩ = 1√
2
o1|ϕ1 ⟩+

(
1
2
o1 +

1
2
o2
)
|ϕ2 ⟩+ 1√

2
o2|ϕ3 ⟩+ 1

2
o3|ϕ4 ⟩ (11)
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Hence, we can write the expectation value of operator Ô|Ψ ⟩ as

⟨Ψ |Ô|Ψ ⟩ =
{
1

2
⟨ϕ1|+

1√
2
⟨ϕ2|+

1

2
⟨ϕ3|

}
{

1√
2
o1|ϕ1 ⟩+

(
1

2
o1 +

1

2
o2

)
|ϕ2 ⟩+

1√
2
o2|ϕ3 ⟩+

1

2
o3|ϕ4 ⟩

}
=

1√
2
o1 +

1√
2
o2 =

1√
2
(o1 + o2).

Stage 2 (Commutators) Show the relation (3.41):
[
Â, B̂Ĉ

]
=

[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
.

Solution: [
Â, B̂Ĉ

]
= ÂB̂Ĉ − B̂ĈÂ

on adding and subtracting B̂ÂĈ,[
Â, B̂Ĉ

]
= ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ

=
[
ÂB̂ − B̂Â

]
Ĉ + B̂

[
ÂĈ − ĈÂ

]
=

[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
. (12)

Then evaluate the following commutators:

(i)
[
mω2x̂2 + p̂2, x̂

]
Solution:[
mω2x̂2 + p̂2, x̂

] Eq. (3.41)
=

[
mω2x̂2, x̂

]
+
[
p̂2, x̂

]
Eq. 12
= mω2

{[
x̂, x̂

]
x̂+ x̂

[
x̂, x̂

]
x̂
}
+
[
p̂, x̂

]
p̂+ p̂

[
p̂, x̂

]
p̂

=
[
p̂, x̂

]
p̂+ p̂

[
p̂, x̂

]
p̂

Eq. (2.46)
= −iℏp̂.

(ii) Consider operators σ̂x, σ̂y and σ̂z. Assume a Hilbertspace with only two
basis states | 1 ⟩ and | 2 ⟩. In this basis, let the matrix representations of
those operators be

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (13)

Find the matrix representation of all commutators
[
σ̂k, σ̂n

]
, and try to find

a single neat expression for them.
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Solution: First we could show that if
[
Â, B̂

]
= Ĉ, then the matrix repre-

sentation of Ĉ fulfills C = AB −B A. Using that result, we just evaluate
matrix products of the matrices in Eq. (13) in the two different orderings
and substract.

The matrix representation of commutators that we find are then[
σ̂x, σ̂y

]
= 2i

[
1 0
0 −1

]
= 2iσ̂z,[

σ̂y, σ̂z
]

=

[
1 0
0 −1

]
= 2iσ̂x,[

σ̂z, σ̂x
]

=

[
1 0
0 −1

]
= 2iσ̂y

Hence, a single expression can be written as
[
σ̂k, σ̂n

]
= 2iϵknmσ̂m.

Stage 3 (Uncertainty relations)

(i) Consider the anharmonic oscillator Hamiltonian

Ĥ =
p̂2

2m
+ χx̂4. (14)

Can one simultaneously know the momentum and energy? If not, what is
the uncertainty relation between these two observables?
Solution: No. The uncertainty relation between these two observables is

defined as σĤσp̂ =

√(
1
2i
⟨
[
Ĥ, p̂

]
⟩
)2

, so first we calculate
[
Ĥ, p̂

]
:

[
Ĥ, p̂

]
=

[
p̂2

2m
+ χx̂4, p̂

]
=

1

2m

[
p̂2, p̂

]
+ χ

[
x̂4, p̂

]
= χ

[
x̂4, p̂

]
= 4iℏχx̂3,

where we have used the identity
[
Ân, B

]
= nÂn−1

[
Â, B̂

]
, which follows

through repeated application of Eq. 12.

The uncertainty relation that we seek thus reads

σĤσp̂ =
√(

1
2i
⟨(4iℏχx̂3)⟩

)2
= |2ℏχ⟨x̂3⟩| . (15)

Note, that unlike the basic HUP, the RHS still contains the expectation
value ⟨x̂3⟩. In particular this means that the answer depends on the state.
For example in an eigenstate ϕn(x) of Ĥ ⟨x̂3⟩ will be zero since |ϕn(x)|2 is
even (Assignment 3, Q1b) and x3 is odd. This makes sense since σĤ = 0
and σp̂ > 0 but finite, so the LHS of Eq. 15 is also zero.
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(ii) For which of the following tasks can you use the energy-time uncertainty
relation (and why or why not)? What does it tell you if yes?

(a) A harmonic oscillator is in eigenstate ϕ5(x). We want to know the
period of oscillations of the complex phase of the wavefunction.
Solution: We cannot use energy-time HUP, since that discusses the
rate of change of observables, which do not change if the system is in
a stationary state, like in this case.

(b) A harmonic oscillator is in a superposition of eigenstates ϕ5(x), ϕ6(x)
and ϕ7(x). We want to approximate the time-scale of oscillations of
the expectation value of momentum ⟨ p̂ ⟩.
Solution: Yes. This has to do with a time-dependent scenario and
we ask for the time-scale of change of an observable, so it perfectly
matches the scenario for which we derived this HUP. To check you
can write the state as Ψ(x, t) =

∑7
n=5 cnϕn(x)e

−iEnt/ℏ and calculate
⟨p̂⟩ using ⟨Ψ|p̂|ψ⟩ ∼ ⟨Ψ|(â† − â)|Ψ⟩ to get the period of oscillations
T = 2πℏ

|En−En+1| = 2πℏ
∆E

as characteristic time scale of oscillations of
the expectation value of momentum and see how it relates to the one
predicted by the HUP.

(c) A quantum superposition state at time t = 0

|Ψ(0) ⟩ =
∑
n

cn|ϕn ⟩ (16)

contains a superposition of a larger number of basis states as shown
in the figure below (left). Because of all the different phase factors
e−iEnt/ℏ in the corresponding time evolving state, the expectation value
of some (unspecified) operator ⟨ Ô ⟩ quickly decays to near zero as also
shown in the figure (right). However let this be a case where all the
energies En are rational multiples of each other, then there is a time
trev called “revival time”, where ⟨ Ô ⟩ returns to its initial value be-
cause all e−iEntrev/ℏ = 1.
You want to know the timescale of this revival and the timescale it
takes for ⟨ Ô ⟩ to decay to near zero (answer for both of these sepa-
rately).
Solution: We can use it to find the decay time (in the drawing the time
it takes for ⟨ Ô ⟩ to reach zero or almost zero), since this also is clearly
related to the “characteristic time on which the expectation value ⟨ Ô ⟩
changes, as drawn and discussed near Eq. (3.52). To find it, we would
first have to evaluate ∆E for the state Eq. 16, which is straightforward
if we know the Hamiltonian and all the cn. We cannot use the HUP
to find the revival time, since that time-scale does not match the defi-
nition of the one to which the HUP applies. trev will be related to the
least common multiple of all the En, and thus is a subtle function of
all the details of the spectrum of the Hamiltonian. This is meant as a
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warning that in order to apply the energy-time HUP, one has to pay
careful attention to what energies and what times are being considered.
Bonus: To see how a revival can come about: if there is a finite num-
ber of basis states in a superposition, we can write the time-evolving
quantum state as

|Ψ(t) ⟩ =
M∑
n=0

cne
−iEnt/hbar|ϕn ⟩, (17)

as usual. If now the energies of these states are related by
rational numbers, this means we can write all of them as En =
CPn/Qn, for integers Pn and Qn. Then there exists a time t = trev
called “revival time”, where all the complex exponential functions will
reach the value 1 simultaneously. Thus the state will be the same state
as at the initial time, and therefore any expectation value must take
the same value as at the initial time.
You can then show that that time is

trev =
2πℏ

Lcd[P ]C
Lcm[Q], (18)

where Lcm[Q] is the lowest common multiple of the Qn and Lcd[P ]
the greatest common divisor of the Pn. (see also Wikipedia, Quantum
revival). Both, Lcm[Q], Lcd[P ] depend on all sorts of details of the
allowed energies, and not only on the energy uncertainty.
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