
PHY 303, I-Semester 2023/24, Tutorial 4 solution

27. Sept. 2023
Work in the same teams as for assignments. Do“Stages” in the order below. Discuss via
online (video or audio) conference on a subchannel for your group.

Stage 1 Catch up on all items of tutorial 3 that interest you and you did not yet have
time to go through.

Stage 2 Discuss the following clarifying exercises depending on which topic you feel you
require more clarification:

(i) (ladder operators) Explicitly with all details, the first three Harmonic os-
cillator eigenstates are
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Using the ladder operators
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(these slightly differ from those in the lecture/Griffith, but fulfill the same
job), show that:
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explicitly among those first three states.
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(ii) (wavepacket spreading) Consider a free particle treated quantum mechan-
ically, that is at t = 0 in a Gaussian wavefunction, Eq. (2.82), at x0 = 0
with spatial width σ. For the following examples, find the time tspr > 0 at
which the spatial uncertainty has increased by a factor of two.
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solution: using equation (2.90):

σx(t) =

√
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⇒ t =
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(a) An electron with me = 9.1 × 10−31 kg and an uncertainty of the size
of an atom σ = 5.3× 10−11 m.
using the result for electron: tspr =

√
3meσ2

ℏ =
√
3(9.1×10−31)(5.3×10−11)2

1.05×10−34 =
4.188× 10−17s

(b) A cricket ball of mass m = 0.15 kg, with σ = 1 µm.
tspr = 2.4 × 1021s = 8 × 1013 years. [compare the age of the universe
τ = 14× 109 years.

(c) An electron with me = 9.1 × 10−31 kg and an uncertainty of the size
of a nanoparticle σ = 20 nm.
tspr = 6.004× 10−12s

Stage 3 Bra-Ket Notation: Make the usage instructions for Dirac (Bra-Ket) notation
from week 6 accessible on a device.

(a) Then translate the following superposition state wavefunction (assuming the
standard particle in the infinite square well potential) into Dirac notation:

Ψ(x) =
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ϕ0(x) +
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2
ϕ1(x) +

1

2
ϕ2(x). (6)

(b) Only using Dirac notation, check whether this state is normalised correctly.

(c) Using Dirac notation, find the probabilities for energy to be En, for position
to be within [x, x + dx] and for momentum to be within [p + dp]. For
which cases and how/when do we have to convert back to a more explicit
representation of the quantum states at some point, to get an answer? Do
that conversion without the final step of evaluating any integrals that pop
up.

(d) Write equation (1.71) and other equations required to use it in Dirac nota-
tion.

solution:

(a) In Dirac notation we can represent the eigenstate as |ϕn ⟩, so the wavefuc-
tion Ψ(x) will now be represented by a vector

|Ψ ⟩ = 1

2
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2
|ϕ2 ⟩. (7)
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(b) To check for normalization we have

⟨Ψ |Ψ ⟩ =
[
1

2
⟨ϕ0 |+

1√
2
⟨ϕ1 |+

1

2
⟨ϕ2 |

] [
1

2
|ϕ0 ⟩+

1√
2
|ϕ1 ⟩+

1

2
|ϕ2 ⟩

]
=

1

4
⟨ψ0 |ψ0 ⟩+

1

2
⟨ψ1 |ψ1 ⟩+

1

4
⟨ψ2 |ψ2 ⟩

=
1

4
+

1

2
+

1

4
= 1.

where in the second equality we have used that eigenstates with different
index are orthogonal and hence e.g. ⟨ϕ0 |ϕ1 ⟩ = 0.

(c) To find out the probability for energy to be En, we need to project the state
vector (|Ψ ⟩) to our energy eigenvectors (|ϕn ⟩), and its square will give the
probability. So we have

pn = |cn|2

= |⟨ϕn |Ψ ⟩|2,
and find energies [E0, E1, E2] with probabilities [1

4
, 1
2
, 1
4
] re-

spectively.

Similarly to find the probability for position to be within [x, x + dx]. We
project the state vector to position basis (|x ⟩)
p(x) = |⟨x |Ψ ⟩|2 dx = |Ψ(x)|2 dx

=

(
1

2
ϕ0(x) +

1√
2
ϕ1(x) +

1

2
ϕ2(x)

)∗(
1

2
ϕ0(x) +

1√
2
ϕ1(x) +

1

2
ϕ2(x)

)
dx

=

[
1

4
|ϕ0(x)|2 +

1

2
|ϕ1(x)|2 +

1

4
|ϕ2(x)|2

+

(
1

2
√
2
ϕ0(x)

∗ϕ1(x) +
1

4
ϕ0(x)

∗ϕ2(x) +
1√
2
ϕ1(x)

∗ϕ2(x) + c.c.

)]
dx.

This cannot be further simplified, and its evaluation would require the ex-
plicit form of ϕn(x) known from the lecture. Note that the last line
is nonzero since there is no integration (only

∫
ϕ∗
1(x)ϕ2(x) = 0 NOT

ϕ∗
1(x)ϕ2(x) itself.

Lastly for the momentum probability within [p, p+dp] we project to momen-
tum eigenvectors (| p ⟩)
p(p) = |⟨ p |Ψ ⟩|2
in a similar way.

(d) The eqn (1.71) in terms of Dirac notation can be written as

|Ψ(t) ⟩ =
∑
n

cn(t)|ϕn ⟩ =
∑
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cn(0)e
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Where cn(0) in Dirac notation is given by

cn(0) = ⟨ϕn |Ψ ⟩
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