
PHY 303, I-Semester 2023/24, Tutorial 3 solution

Stage 1 Particle in the box, online app: Start the online-app for exploring solutions
of the TDSE at http://www.falstad.com/qm1d/ on your laptop or on a pad
in AIR. Please go through the mini documentation quantum app manual.pdf

provided on teams and/or the movie quantum app manual.mp4 that I made, but
ideally also read the more extensive online documentation.

We can now use this app to reproduce example 14 of the lecture. The default
setting should be “setup: infinite well”. There should be two white marked
circles with rotating arrows at the bottom. These are the c1,2(t) from Eq. (2.19)
represented in the complex plane. The height of the curve in the centre panel
is |Ψ3(x, t)|2. The color shading indicates the complex phase φ(x, t) of the wave
function Ψ3(x, t) ≡

√
n(x, t)eiφ(x,t)t. It turns out that lots of “color-stripes”

indicate higher velocity, uni-color indicates small or no velocity.

(i) Inspect the eigenstates of the particle in the box, and qualitatively confirm
all the results of the lecture, such as the dot-points below Eq. (2.18).

(ii) Now follow the instructions above to create Example 14 in the app. Discuss
what you see. Look at the spatial variation of the phase, and interpret it
in terms of a net velocity or probability current (see section 1.6.4.). How
does this make sense intuitively?

Figure 1: (left) Superposition similar to Ψ(x, t = 0) = 1√
2
(ϕ1(x) + ϕ2(x)). (right) Super-

position similar to Ψ(x, t > 0) = 1√
2
(ϕ1(x)− ϕ2(x)).

Solution: See screenshots in Fig. 1 and compare with example 14. We also
show sliderpositions so that you can recreate this scenario. We have created
the superposition by clicking on the two first circular icons in the bottom left
corner. As time proceeds, you see that the probability density is bouncing
from right to left and back. This is consistent with the idea of the particle
bouncing back and forth between the walls. The motion also shows up as
phase gradient on the wavefunction (rainbow colors), compare Eq. (1.53)
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and section 2.1. Also the phase gradient (and hence the underlying velocity)
periodically changes direction. There has to be a probability current from
right to left, if the probability density on the right is decreasing and on the
left increasing.

(iii) Let us now combine the “particle in the square well potential’ with a Gaus-
sian wavepacket. Adjust all settings as shown in the screenshot below, and
click with the mouse near the red-cross, which will create the wavepacket

Ψ(x, t = 0) = ei
p0
ℏ xe−x2/(2b2)/(πb2)1/4, (1)

where p0 is the momentum at which you have clicked into the panel near
the red-cross. Discuss what the wavefunction means. Then discuss what
you expect to happen. ONLY then, uncheck “stopped” and confirm your
expectation with the simulation. Discuss the physical meaning of what
you observe.
Solution: See screenshots in Fig. 2 and discussion in caption.

(iv) If the app did not exist, and you had to calculate the time-evolution from
the given Gaussian initial state analytically, how would you proceed? So-
lution: As in Quiz1, Q2(c), except that the initial state to be expanded
would be Eq. 1 instead of the one given in Eq. (1) of that quiz.

Stage 2 Harmonic oscillator, online app: Now switch the first pulldown menu to
“harmonic oscillator”.

(i) We want to reproduce example 16 (or assignment 2 Q2), on a classical
looking oscillation using the app. For that, first create the ground-state of
the oscillator. Then switch the second pulldown menu to “mouse, translate
function”, and move the ground-state gaussian a bit to the left or right.
Then let it play. What do you see? You may also analyze all the panels in
terms of our discussion of the Gaussian wavepacket and its Fourier trans-
form in section 2.6.
Solution: See screenshots in Fig. 3 and compare with example 16 and As-
signment 5 Q1.

(ii) In a slightly different approach, set the second pulldown menu to “mouse,
create Gaussian”, and click somewhere on the side from the centre of the
oscillator potential. What is different to before? What is the same? Why
do the differences happen? Solution: See screenshots in Fig. 4. What is
different, is that the Gaussian now also periodically changes its widths,
while that had stayed constant in Fig. 3. What is still the same, is that
it remains of Gaussian shape and oscillates left-right with the position ex-
pectation value (red vertical line in middle panel) performing a classical
oscillation. The difference occurs because of the changed initial state width
σ. Read also wikipedia “Squeezed coherent state”.

Stage 3 Quantum tunneling: The app also allows us to have a look at quantum
tunnelling, but we have to “embed” the barriers within one of the potentials
provided, such as a very large wide well.
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(i) Change setup to “Well pair”. You should see two square wells with a small
barrier in between. This barrier is like the one discussed in section 2.2.4.,
except that here in the app, the space to the right and left is again limited
by the far side of the square wells. Then select “Mouse = Create Gaussian”
and click on the middle (wavefunction) panel into the right well. Discuss
on your table what is happening initially and then after some time (30sec -
1 min). Interpret this with respect to section 2.2.4 lecture material. Make
sure the mass is the default value, else restart the app.
Solution: See screenshots in Fig. 5.

(ii) Now use the sliderbar “mass” to increase the mass of the particle and do
the above steps again. Increase 2-3 times. Then make it lighter than at
the beginning. Discuss what you see. Is this consistent with Eq. (2.40)?

(iii) Use the slider ”well separation” to vary the width of the barrier in the
middle. Redo above steps. Discuss what you see and why.
Solution: With a bit of patience in this part, you should be able to quali-
tatively checkout the main dependencies of the transmission coefficient T
(Eq. (2.38) and Assignment 3 Q2): T increases for lighter particles and
decreases for wider or higher barrier potential. Since the dependence is
exponential, it might be difficult to pick the right parameters to see the
change without it directly jumping to 0.

Stage 4 Quantum Reflection: Getting the app to show quantum reflection is a bit
tricky, but can be done.

(i) Change setup to “Coupled well pair”. Click ”stopped” to stop the anima-
tion. Then move sliderbar ”well separation” all the way to the right, and
sliderbar ”mass” to just on the rhs of the word ”mass”. Switch the second
pulldown menu to ”create Gaussian” and click in the bottom most panel
at the same horizontal position as the right edge of the barrier in the top
panel.

The bottom panel shows you the Fourier-coefficients (momentum probabil-
ity density), while the middle one shows you the position space probability
density. The red line in the top most panel shows you the mean particle
energy. Discuss in your group how you can see in these panels that we
created the following initial state for the particle: It has an energy that
is larger than the barrier energy E > U0. It is initially most likely at
x = 0 (in the middle of the screen) but moving to the right. Solution:
See screenshots in Fig. 6, here particularly for the position of slider bars.
Note that the sequence that I got to work is a little different from the one
suggested in the text.

(ii) Now unclick ”stopped” to start the simulation. If you are impatient slightly
increase simulation speed. Discuss what happens once ”the particle reaches
the potential drop at the edge of the barrier”.

(iii) What would you expect for a classical particle that we start on top of the
barrier?
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The classical particle would just keep going further, with 0 reflection prob-
ability.
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Figure 2: (top left) By clicking at the red cross, we have created a Gaussian wavepacket
with nonzero mean momentum p0 towards the right [bottom panel, where panel refers
to the three pieces within EACH screenshot], in position space centered on the origin,
[middle panel]. We can see that the particle is net moving to the right, since there is a
corresponding phase gradient (color stripes) shown for the position space wavefunction
Ψ(x, 0) in the middle row. (top middle) After a little while, the wavepacket has moved
to the right as expected, and has also widened (see Eqs. (2.90) and (2.91)). (Top right)
Once the particle hits the edge of the square well potential, it is elastically reflected
since it has insufficient energy to escape. The reflected part shows up in the momentum
probability density as a second peak on the left [bottom panel]. Simultaneously, the
position probability density [middle row] now shows an interference pattern (small spaced
spikes), between the parts of the wavefunction moving to the left and moving to the right.
(bottom left) As time goes on, the probability of the particle already having been reflected
increases, hence the left peak in the momentum probability density increases [bottom row].
(bottom right) After much longer times there will be a complex interference pattern in
both position and momentum space.
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Figure 3: (left) At t = 0 we shift the Gaussian from the centre to the right. (middle) we
see it starts moving to the left, while the wavefunction develops a phase gradient (rainbow
colors) representing momentum to the left (right) At the turning point that phase gradient
disappears for short when the particle comes to rest, then it begins moving back towards
the right.

Figure 4: (left) At t = 0 we click on the right to create a Gaussian, but it ends up having
a smaller width than the oscillator ground state. (middle) while moving to the left, this
time it also changes width and spreads out (right) Just in time for reaching the turning
point, it has narrowed down again.

Figure 5: (left) The initially created Gaussian in the right well spreads (see section 2.6. and
Eq. (2.90)) and hits the barrier (middle) For a while it seems that the particle is not able
to penetrate the barrier and remains on the right (right) if we wait long enough, we see
small non-zero probability density in the left well: a sign of quantum tunneling.
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Figure 6: (left) The Gaussian is created in the centre of the barrier by clicking on the
MIDDLE panel, not the bottom one (middle-left) It spreads as usual (middle-right) Once
it hits the edge, you can see it reflected from the edge, even though the mean particle
of the energy is higher than the barrier (red line in top panel) (right) If we wait long
enough, small probability amplitude develops also in the well region, from that part of
the wavefunction that was NOT reflected of the edge. Nontheless the particle remains
trapped on top of the barrier with a very high probability.
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