
PHY 303, I-Semester 2023/24, Assignment 6 solution

(1) Angular momentum and commutators [8pts]:

(a) Consider the three dimensional Gaussian wavepacket given in Eq. (4.15) of the lecture,
with r0 = [x0, 0, 0]

T and k0 = [0, k0, 0]
T . Make a sketch of the probability density

for σ ≪ x0 and describe the state of the particle in terms of physics. Then find the
expectation value of the angular momentum and discuss. Hint: Make extensive use
of symmetries to avoid most of the integrations that pop up. Why does this result
make sense?

Solution: The 3D Gaussian wavepacket required is given by

ϕ(x, y, z) =
exp(ik0y) exp

(
− y2

2σ2

)
exp

(
− z2

2σ2

)
exp

(
− (x−x0)2

2σ2

)
(πσ2)3/4

(1)

It looks like a fuzzy ball centered at [x0, 0, 0] in Cartesian coordinates, see Fig. 1. The

Figure 1: 3D Gaussian wavepacket. We attempted to draw a transparent grey sphere, the
darkness of which corresponds to probability density. We also indicated the plane wave
component of the wavefunction ∼ exp(iky) in violet.

state of the particle is one localised near the 3D location r0 = [x0, 0, 0]
T as shown, up

to a position uncertainty σ, which is the same in each of the three cartesian direction.
The particle has a non-zero momentum expectation value only in the y-direction, thus
in time this wavepacket would move along the y-direction with momentum ℏk0 while
it’s the probability density remains Gaussian but in time spreads out along all three
directions (x,y,z).

To find the expectation value of angular momentum,

⟨L̂⟩ =
∫
dx

∫
dy

∫
dzϕ∗(x, y, z)L̂ ϕ(x, y, z) (2)

first realise that this is a vector hence we have to calculate each cartesian component
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separately, inserting

L̂x = −iℏ
(
y
∂

∂z
− z

∂

∂y

)
,

L̂y = −iℏ
(
z
∂

∂x
− x

∂

∂z

)
,

L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
, (3)

which ultimately gives us 6 terms to calculate.

Luckily, we can spot that most of them are zero, even before doing any integrations.
Consider for example

ϕ∗(x, y, z)L̂x ϕ(x, y, z) = (−iℏ)ϕ∗(x, y, z)

[
y

(
− z

2σ2
− z

∂

∂y

)
,

]
ϕ(x, y, z) (4)

where we have already evaluated the (easy) ∂
∂z

derivative. Since we can do the 3
integrations over x, y, z in any order we like, let us do the z one first. Now we see
that the 3D integration for both terms will contain a contribution∫ ∞

−∞
dz z exp

(
− z2

σ2

)
= 0, (5)

in which we are integrating an anti-symmetric integrand over a symmetric interval,
hence this vanishes by symmetry. We thus directly saw that ⟨L̂x⟩ = 0. The exact
same steps yield ⟨L̂y⟩ = 0, again looking at derivatives and integrations wrt. z first.

For ⟨L̂z⟩ these arguments do not work, since the wavefunction is not a simple Gaussian
centered on zero in terms of either x or y, which are the axis that appear on the RHS
of L̂z. We evaluate the complete action of L̂z acting on the wavefuntion

ϕ∗(r)L̂zϕ(r) =
(ℏk0 + iℏy/σ)xe−

(x−x0)
2

σ2 − y2

σ2−
z2

σ2

π3/2σ3
− iℏ(x− x0)ye

− (x−x0)
2

σ2 − y2

σ2−
z2

σ2

π3/2σ5
(6)

where we have used the product rule for the first fraction. When integrating over all
space, we can use

∫
−∞∞ dy ye−y2/σ2

= 0 by symmetry, which sets all terms to zero
with get multiplied by the imaginary unit i, which is good, since we need the end result
to be real.

We are left with

⟨L̂⟩z =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dxdydz

ℏk0xe−
(x−x0)

2

σ2 − y2

σ2−
z2

σ2

π3/2σ3
(7)

where we can use the normalisation condition for the 1D Gaussian,

e.g. 1
(
√
πσ)

∫
dy e−

y2

σ2 = 1 to trivially sort out the y and z integrations. For the

remaining x integration we make the substitution x̃ = x− x0, thus

⟨L̂⟩z =
∫ ∞

−∞
dx

ℏk0xe−
(x−x0)

2

σ2

π1/2σ
=

∫ ∞

−∞
dx̃

ℏk0(x̃+ x0)e
− x̃2

σ2

π1/2σ
. (8)
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Yet again the first integrand ∼ x̃ gives an integral that vanished by symmetry, and for
the term ∼ x0 we use the above normalisation of a 1D Gaussian to finally find:

⟨L̂⟩z = ℏk0x0 (9)

This is roughly what we would expect, given the particle is “mostly at position
[x0, 0, 0]

T” (up to an uncertainty σ) and “mostly moving with momentum p =
[0, ℏk0, 0]T (up to an uncertainty ∼ 1/σ). Using the classical relation for angu-
lar momentum L = r× p = [0, 0, ℏk0x0]T .
More rigorously we have found that in this case ⟨L̂⟩ = ⟨r⟩ × ⟨p⟩, but note that this
will not be always the case.

(b) Consider an eigenstate of the TISE with a spherically symmetric potential. Show
explicitly (with integrations) that in any eigenstate ⟨r̂⟩ = 0 and ⟨p̂⟩ = 0 and then
argue why we could have known this without calculation.

The TISE of a spherically symmetric potential V (r) can be solved by sepera-
tion of variables,and by solving the radial and angular equation independently:

sin(θ)
∂

∂θ

(
sin(θ)

∂Y

∂θ

)
+
∂2Y

∂ϕ2
= −l(l + 1)sin(θ)2Y, (10)

d

dr
(r2

dR

dr
)− 2mr2

ℏ2
[V (r)− E] = l(l + 1)R, (11)

where the eigenstate of the TISE is given as Ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). Note that
Y (θ, ϕ) has a parity of −1l, thus Y (θ, ϕ)∗Y (θ, ϕ) is always even. To calculate the
expectations ⟨r̂⟩ = [⟨x̂⟩, ⟨ŷ⟩, ⟨ẑ⟩]T where x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.
Thus:

⟨x⟩ =
∫

|Ψ|2r sin θ cosϕd3r =

∫ ∞

0

R(r)2r3dr

∫ π

0

sin2 θP l
m(θ)

∗P l
m(θ)dθ

∫ 2π

0

cosϕdϕ︸ ︷︷ ︸
=0

= 0

⟨y⟩ =
∫

|Ψ|2r sin θ cosϕd3r =

∫ ∞

0

R(r)2r3dr

∫ π

0

sin2 θP l
m(θ)

∗P l
m(θ)dθ

∫ 2π

0

sinϕdϕ︸ ︷︷ ︸
=0

= 0

⟨z⟩ =
∫

|Ψ|2r cos θd3r =

∫ ∞

0

R(r)2r3dr

∫ π

0

sin θ cos θP l
m(θ)

∗P l
m(θ)dθ︸ ︷︷ ︸

=0

∫ 2π

0

dϕ = 0

(12)

For the expectation values of momentum, we apply the momentum operator in spher-
ical polar coordinates onto the wavefunction (see Eq. (4.35))

−iℏ∇ = −iℏ
[
er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ

]
(13)
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and then perform integrations similar to the ones above again, with the same results,
that also ⟨p̂⟩ = 0.

We can use similar arguments as for assignment 3 Q1b to see this without integrations
(but using symmetries): The potential is symmetric under reflections through the
origin V (r) = V (−r), due to which you can show that the wavefunction must be
symmetric or antisymmetric under any such reflection ϕ(r) = ±ϕ(−r). You can use
this property to show that both ⟨r⟩ and ⟨p⟩ must be zero, and we will do that more
formally at the beginning of QM-II.

(c) Show the commutators [3 pts] [
L̂2, L̂n

]
= 0, (14)[

L̂z, L̂±
]
= ±ℏL̂±, (15)[

L̂2, L̂±
]
= 0. (16)

and show that

L̂2 = L̂±L̂∓ + L̂2
z ∓ ℏL̂z. (17)

Solution: [
L̂2, L̂x

]
=

[
L̂2
x, L̂x

]︸ ︷︷ ︸
≡0

+
[
L̂2
y, L̂x

]
+
[
L̂2
z, L̂x

]
= L̂y

[
L̂y, L̂x

]
+
[
L̂y, L̂x

]
L̂y + L̂z

[
L̂z, L̂x

]
+
[
L̂z, L̂x

]
L̂z

= −ιℏL̂yL̂z − ιℏL̂zL̂y + ιℏL̂zL̂y + ιℏL̂yL̂z

=⇒
[
L̂2, L̂x

]
= 0 (18)

The same can be proven for L̂y,z.

To prove
[
L̂z, L̂±

]
= ±ℏL̂± let us use the definition L̂± = L̂x± iL̂y [Eq. (4.58)] of the

ladder operators. Then [
L̂z, L̂±

]
=

[
L̂z, L̂x ± iL̂y

]
=

[
L̂z, L̂x

]
± i

[
L̂z, L̂y

]
= iℏL̂y ± i

(
−iℏL̂x

)
= ±ℏ

(
L̂x ± iL̂y

)
=⇒

[
L̂z, L̂±

]
= ±ℏL̂± (19)
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To prove
[
L̂2, L̂±

]
= 0

[
L̂2, L̂±

]
=

[
L̂2, L̂x ± L̂y

]
=

[
L̂2, L̂x

]︸ ︷︷ ︸
≡0

±
[
L̂2, L̂y

]︸ ︷︷ ︸
≡0

=⇒
[
L̂2, L̂±

]
= 0 (20)

One could also show that

L̂±L̂∓ = L̂2
x + L̂2

y ∓ i
[
L̂x, L̂y

]
= L̂2

x + L̂2
y ± ℏL̂z

Thus,

L̂2 = L̂±L̂∓ + L̂2
z ∓ ℏL̂z (21)

(d) Suppose that
[
Â, B̂

]
= c ∈ C is just a number. Consider a function f(x) with

convergent Taylor series and its derivative f ′(x) = df(x)/dx. Show that
[
f(Â), B̂

]
=

cf ′(Â).

Solution :Before attempting the solution for a general function f(x), it is easier to
show that

[
Â, B̂n

]
= nB̂n−1

[
Â, B̂

]
[
Â, B̂n

]
= B̂n−1

[
Â, B̂

]
+
[
Â, B̂n−1

]
B̂

= B̂n−1
[
Â, B̂

]
+ B̂n−2

[
Â, B̂

]
B̂ +

[
Â, B̂n−2

]
B̂2

=⇒
[
Â, B̂n

]
=

n−1∑
i=0

B̂n−i−1
[
Â, B

]
B̂i (22)

To show that

[
f(Â), B̂

]
= f ′(Â)

[
Â, B̂

]
, (23)

From Taylor series expansion f(A) = f(0) + Af ′(0)
1!

+ A2 f
′′(0)
2!

+ ......
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[
f(Â), B̂

]
= −

[
B̂, f(0) + Â

f ′(0)

1!
+ Â2f

′′(0)

2!
+ ......

]
= −

[
B̂, f(0)

]
−

[
B̂, Â

f ′(0)

1!

]
−
[
B̂, Â2f

′′(0)

2!

]
− ................

using (22), we get

= −
[
B̂, Â

]
f ′(0) + 2Â

[
B̂, Â

]f ′′(0)

2!
+ 3Â2

[
B̂, Â

]f ′′′(0)

3!
+ .................

= −
[
f ′(0) + A

f ′′(0)

1!
+ A2f

′′(0)

2!
+ ........

] [
B̂, Â

]
=⇒

[
f(Â), B̂

]
= f ′(Â)

[
Â, B̂

]
(24)

(2) Two-dimensional Harmonic oscillator in polar coordinates [10pts]: Con-
sider the isotropic quantum harmonic oscillator in two dimensions using planar polar
coordinates.

(a) Convert the Hamiltonian from cartesian coordinates:

Ĥ =
p̂2x
2m

+
p̂2y
2m

+
mω2

2
(x2 + y2), (25)

to planar polar coordinates r =
√
x2 + y2, φ = atan2(y, x).

Solution: The isotropic two-dimensional quantum harmonic oscillator Hamiltonian
in cartesian coordinates is given by:

Ĥ = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+mω21

2
(x2 + y2). (26)

To find the Laplacian in 2D in terms of polar coordinate let we start with ∂2u
∂x2 +

∂2u
∂y2

.

The Cartesian coordinates are related to polar coordinates by x = r cosφ, y = r sinφ
and the reverse relations are given by r =

√
x2 + y2 and φ = tan−1

(
y
x

)
.

Also ∂r
∂x

= x√
x2+y2

= cosφ and ∂φ
∂x

= − y
x2+y2

= − sinφ
r
.

Using the chain rule, we know that:

∂u

∂x
=
∂u

∂r
· ∂r
∂x

+
∂u

∂φ
· ∂φ
∂x

= cosφ
∂u

∂r
− sinφ

r

∂u

∂φ

We also observe that
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∂

∂x
= cosφ

∂

∂r
− sinφ

r

∂

∂φ
and

∂

∂y
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ

Hence we can write

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

(
cosφ

∂

∂r
− sinφ

r

∂

∂φ

)(
cosφ

∂u

∂r
− sinφ

r

∂u

∂φ

)
= cos2 φ

∂2u

∂r2
− 2 sinφ cosφ

1

r

∂2u

∂r∂φ
+ sin2 φ

1

r2
∂2u

∂φ2
+ sin2 φ

1

r

∂u

∂r
+ 2 sinφ cosφ

1

r2
∂u

∂φ
(27)

Similarly, we also observe that,

∂2u

∂y2
= sin2 φ

∂2u

∂r2
+ 2 sinφ cosφ

1

r

∂2u

∂r∂φ
+ cos2 φ

1

r2
∂2u

∂φ2
+ cos2 φ

1

r

∂u

∂r
− 2 sinφ cosφ

1

r2
∂u

∂φ
(28)

Adding the two expressions, we finally get the transformed equation,

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
(29)

Thus, we can rewrite the Hamiltonian in polar coordinates as

Ĥ =
−ℏ2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
+
mω2

2
r2. (30)

(b) With the Ansatz ϕnℓ(r, φ) = Φnℓ(r)Aℓ(φ), use separation of variables to split the TISE
into an angular and a radial part. Solve the angular equation, using techniques and
boundary conditions similar to what you learnt regarding angular momentum states
in 3D. Discuss how one would go about solving the radial equation schematically (you
do not have to solve it).

Solution: Starting with TISE and inserting the product Ansatz we have

Ĥϕnℓ(r, φ) = Enℓϕnℓ(r, φ)

⇒− ℏ2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
ϕnℓ(r, φ) +

mω2

2
r2ϕnℓ(r, φ) = Enℓϕnℓ(r, φ)

⇒− ℏ2

2m

(
∂2

∂r2
+

1

r

∂

∂r

)
ϕnℓ(r, φ) +

mω2

2
r2ϕnℓ(r, φ)− Enℓϕnℓ(r, φ) =

ℏ2

2mr2
∂2

∂φ2
ϕnℓ(r, φ)

⇒− r2

Φnℓ(r)

(
∂2

∂r2
+

1

r

∂

∂r

)
+

2m

ℏ2

(
mω2

2
r4 − r2Enℓ

)
=

1

Aℓ(φ)

∂2

∂φ2
Aℓ(φ) = const = −µ2(say)

(31)
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from this we get angular Schrödinger equation which gives us the solution

∂2

∂φ2
Aℓ(φ) = −µ2Aℓ(φ)

⇒Aℓ(φ) = exp (−iµφ). (32)

Since the coordinate φ is periodic over [02π] and the wavefunction must be continuous,
we require that Aℓ(φ = 0) = Aℓ(φ = 2π), which implies that µ must be an integer.

The radial Schrödinger equation is more complex:

− r2
(
∂2

∂r2
+

1

r

∂

∂r

)
+

2m

ℏ2

(
mω2

2
r4 − r2Enℓ

)
Φnℓ(r) = −µ2Φnℓ(r)

⇒
(
∂2

∂r2
+

1

r

∂

∂r
− m2ω2

ℏ2
r2 +

2mEnℓ

ℏ2

)
Φnℓ(r) =

µ2

r2
Φnℓ(r) (33)

Proceeding with the usual program (as done in the lecture for the harmonic oscillator
or the Hydrogen atom), we could first inspect the limiting case r → ∞ in equation
(33), which gives: (

∂2

∂r2
+

1

r

∂

∂r
− m2ω2

ℏ2
r2
)
Φnℓ(r) = 0 (34)

and subsequently r → 0, yielding(
∂2

∂r2
+

1

r

∂

∂r
− µ2

r2

)
Φnℓ(r) = 0. (35)

Using solutions in these limiting cases, one could make a refined Ansatz in the hope
to transform the complete equation Eq. (33) into a neater one. However since both
limiting cases already give rise to special functions in their solution, we shall avoid
the discussion here.

Alternatively one can just solve Eq. (33) on a computer. If you are interested you
can surely find the discussion of their analytical solution online.

(3) Two-dimensional Harmonic oscillator in the Schrödinger and Heisenberg
pictures [10pts]:

(a) Write down all eigenstates and eigenenergies of the Hamiltonian (25) by adapting the
discussion of section 4.1.1.

Solution: The 2D TISE with inserted potential reads

Eϕ(r) =

(
− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2

(
x2 + y2

))
ϕ(r) (36)
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Since we can write this as a sum of x, y terms, we make the usual factorisation Ansatz
ϕ(r) = ϕnx(x)ϕny(y). Inserting this into (36) and reshuffling terms, we can write this
as

Eϕnx(x)ϕny(y) =

[(
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2

)
ϕnx(x)

]
ϕny(y)

+

[(
− ℏ2

2m

∂2

∂y2
+

1

2
mω2y2

)
ϕny(y)

]
ϕnx(x) (37)

We can now move all the x-dependent pieces on the LHS and y dependent ones on
the RHS and then conclude that LHS = C = RHS using separation of variables (see
section 1.6.5.):

(
− h2

2m
∂2

∂x2 +
1
2
mω2x2

)
ϕnx(x)

ϕnx(x)
= const = E −

(
− ℏ2

2m
∂2

∂y2
+ 1

2
mω2y2

)
ϕny(y)

ϕny(y)
(38)

we finally reach two separate TISEs for each dimension:

Enxϕnx(x) = (− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2︸ ︷︷ ︸
≡Vx(x)

)ϕnx(x) (39)

Enyϕny(y) = (− ℏ2

2m

∂2

∂y2
+

1

2
mw2y2︸ ︷︷ ︸
≡Vy(y)

)ϕny(y) (40)

such that E = Enz+Eny . Eq.(39) and Eq.(40) are the TISE of the harmonic oscillator,
hence we know that ϕnx(x) and ϕny(y) are the usual 1D eigenfunctions of the harmonic
oscillator. Altogether our 2D eigenstates are thus

ϕ(r) = ϕnx(x)ϕny(y), (41)

with two discrete indices nx and ny. Equation for the energy along x and y :

Enx =

(
nx +

1

2

)
ℏω, (42)

Eny =

(
ny +

1

2

)
ℏω (43)

The total energy is E = Enx + Eny
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(b) Consider the initial state

Ψ(x, y, t = 0) =
1

2

[
ϕ0(x) + ϕ1(x)

][
ϕ0(y) + iϕ1(y)

]
. (44)

[OR SUCH, adjust to get circular motion] Visualise this state (e.g. with mathematica)
and discuss its physical meaning. Then find the time evolution of ⟨r̂⟩ in the
Schrödinger picture and interpret/discuss the result.

Solution: The state at time t is given by

|Ψ(t) ⟩ = 1

2

[
e−iE0t|ϕx

0 ⟩+ e−iE1t|ϕx
1 ⟩
][
e−iE0t|ϕy

0 ⟩+ ie−iE1t|ϕy
1 ⟩
]
. (45)

From this, to calculate

⟨ψ(t) |r̂|ψ(t) ⟩ = ⟨ψ(t) |xî+ yĵ|ψ(t) ⟩ (46)

Evaluating both terms independently

⟨ψ(t) |x|ψ(t) ⟩

=
1

4

[
⟨ϕx

0 |eiE0t + ⟨ϕx
1 |eiE1t

][
⟨ϕy

0 |eiE0t − i⟨ϕy
1 |eiE1t

]
x[

e−iE0t|ϕx
0 ⟩+ e−iE1t|ϕx

1 ⟩
][
e−iE0t|ϕy

0 ⟩+ ie−iE1t|ϕy
1 ⟩
]

=
1

2

[
⟨ϕx

0 |x|ϕx
1 ⟩ei(E0−E1)t + ⟨ϕx

1 |x|ϕx
0 ⟩ei(E1−E0)t

]
=
1

2

[ σ√
2
ei(E0−E1)t +

σ√
2
ei(E1−E0)t

]
=
σ√
2
cos (E1 − E0)t (47)

⟨ψ(t) |y|ψ(t) ⟩

=
1

4

[
⟨ϕx

0 |eiE0t + ⟨ϕx
1 |eiE1t

][
⟨ϕy

0 |eiE0t − i⟨ϕy
1 |eiE1t

]
y[

e−iE0t|ϕx
0 ⟩+ e−iE1t|ϕx

1 ⟩
][
e−iE0t|ϕy

0 ⟩+ ie−iE1t|ϕy
1 ⟩
]

=
i

2

[
⟨ϕy

0 |y|ϕ
y
1 ⟩ei(E0−E1)t − ⟨ϕy

1 |y|ϕ
y
0 ⟩ei(E1−E0)t

]
=
i

2

[ σ√
2
ei(E0−E1)t − σ√

2
ei(E1−E0)t

]
=
σ√
2
sin (E1 − E0)t (48)

combinedly we see

⟨ψ(t) |r̂|ψ(t) ⟩ = σ√
2

[
cos (E1 − E0)t̂i+ sin (E1 − E0)tĵ

]
(49)
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(c) Now, let us reproduce these results in the Heisenberg picture. Start by finding the
Heisenberg equations of motion for operators x̂H(t), ŷH(t), p̂xH(t), p̂yH(t).

Solution: Using
[
x̂k, x̂ℓ

]
= 0,

[
p̂k, p̂ℓ

]
= 0 and

[
x̂k, p̂ℓ

]
= iℏδkℓ, where k, ℓ ∈ {x, y}

here, we find:

iℏ ˙̂xH(t) =
[
x̂H , Ĥ

]
= iℏ

[
x̂H ,

p̂2x
2m

] Eq. (3.46)
= iℏ

2p̂x
2m

[
x̂H , p

2
x

]
= iℏ

p̂x
/
m (50)

hence

˙̂xH(t) =
p̂xH(t)

m
, (51)

˙̂yH(t) =
p̂yH(t)

m
, (52)

˙̂pxH(t) = −mω2x̂H(t), (53)

˙̂pyH(t) = −mω2ŷH(t), (54)

where the other three equations follow similarly. We see that these take exactly the
same form as the classical Hamilton’s equations (see PHY305) for the same problem.

(d) Solve those, to find a solution for the time-dependent operators in terms of operators
at time t = 0. Hint: To solve differential equations involving operators, pretend they
are not operators initially, then confirm the solution holds also if they are, possibly
worrying about commutators.

Solution: Since Eq. (51)-Eq. (54) take the same form as the classical equations, we
solve them in the same way. Differentiating Eq. (51) wrt. time again and inserting
Eq. (53) and similarly for the x-equations we reach

¨̂xH(t) = −ω2x̂H(t), (55)

¨̂yH(t) = −ω2ŷH(t), (56)

from which we write

x̂H(t) = x̂H(0) cos (ωt) +
1

mω
p̂H(0) sin (ωt),

ŷH(t) = ŷH(0) cos (ωt) +
1

mω
p̂H(0) sin (ωt). (57)

The prefactor of the sine terms follows by inserting the expression into e.g. Eq. (51)
and looking at t = 0.
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(e) Recalculate ⟨r̂⟩ in the Heisenberg picture and confirm your result from (c).

Solution: We find ⟨r̂⟩ now by taking the expectation value of the time-dependent op-
erators in Eq. (57) in the time-independent initial state Eq. (44). We find

⟨Ψ |x̂H(t)|Ψ ⟩ = ⟨Ψ |x̂H(0)|Ψ ⟩ cos (ωt) + 1

mω
⟨Ψ |p̂H(0)|Ψ ⟩ sin (ωt) (58)

Then we use that ⟨ϕn |x|ϕn ⟩ = 0 and ⟨ϕn |px|ϕn ⟩ = 0 by symmetry, where ϕn are
the 1D oscillator eigenstates. Hence

⟨Ψ |x̂H(0)|Ψ ⟩ = 1√
2
(⟨ϕ0 |+ ⟨ϕ1 |)x̂H(0)

1√
2
(|ϕ0 ⟩+ |ϕ1 ⟩)

=
1

2
(⟨ϕ0 |x̂H(0)|ϕ1 ⟩+ cc.)

=
1

2

(∫ ∞

−∞
dx x ϕ∗

0(x)ϕ1(x) + cc

)

=
1

2

 1

(2πσ2)1/2

∫ ∞

−∞
dx x 2

x

σ
e−

x2

σ2︸ ︷︷ ︸
=
√
πσ2

+cc

 =
σ√
2

(59)

In the first line we had split off the y-dependent part such that it is normalised to
one, and since no operator depends on y, the integration over y gives trivially one.
Similarly

⟨Ψ |p̂xH(0)|Ψ ⟩ = 1

2

−iℏ
∫ ∞

−∞
dx ϕ∗

0(x)
∂

∂x
ϕ1(x)︸ ︷︷ ︸

=1/(
√
2σ)

+cc

 = 0, (60)

vanishing due to the “+cc”, and we can show ⟨Ψ |ŷH(0)|Ψ ⟩ = 0 and ⟨Ψ |p̂yH(0)|Ψ ⟩ =
1√
2σ
. Using σ =

√
ℏ/(mω) we can again write the total result as

⟨r̂⟩ = σ√
2

(
cos(ωt)
sin(ωt)

)
(61)

describing circular motion. See anim.gif provided, for the corresponding evolution
of the probability density.

Note that you only know how to take expectation values of the operator at time
t = 0, e.g. x̂H(0) in a state such as Eq. (44). It would be wrong to write
e.g. ⟨Ψ |x̂H(t)|Ψ ⟩ =

∫
dx Ψ∗(x)xΨ(x) directly, you first need to find an equation

such as Eq. (57) and then use ⟨Ψ |x̂H(0)|Ψ ⟩ =
∫
dxΨ∗(x)xΨ(x), which is correct.
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(4) Circular Hydrogen states: [10pts] The code Assignment6 program draft v1.nb

can setup all electronic eigenfunctions of the Hydrogen atom.

(a) Visualise the probability density, and the complex phase in what is called a “circular
Rydberg state” n = 10, l = 9, m = 9 using smartly chosen 2D or 1D cuts through
those.

Solution: First we inspect the density and phase of the wavefunction in the xy-plane
only, as shown in Fig. 2. We see that the density is only significant in a circular
shaped orbit at a roughly fixed distance. Along that circle, the phase varies with a
constant phase gradient (indicating a constant probability current along the circular
path). To see this in a bit more detail, we can plot a 1D cut through the density along
the x axis as shown in Fig. 3. The probability density almost looks like a Gaussian
centered on the target radius (but only almost). When going away from the xy plane
(i.e. along the angle θ), we see that the nonvanishing density region extends a little
away from the xy plane, but becomes very small there. We could explore further and
confirm that the electron really only is likely to be found in close proximity to the
xy-plane.

(b) Calculate the probability current density in that state. With all information together,
discuss the corresponding physical state of the electron.

Solution: The probability current vector in 3-D is given as

Ĵ =
iℏ
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) = Jrer + Jθeθ + Jϕeϕ, with

Jr =
iℏ
2m

(
Ψ
∂Ψ∗

∂r
−Ψ∗∂Ψ

∂r

)
Jθ =

iℏ
2mr

(
Ψ
∂Ψ∗

∂θ
−Ψ∗∂Ψ

∂θ

)
Jϕ =

iℏ
2mr sin θ

(
Ψ
∂Ψ∗

∂ϕ
−Ψ∗∂Ψ

∂ϕ

)
, (62)

where we have used Eq. (4.35) of the lecture.

We can chose to calculate these using mathematica, see
Assignment6 program solution v4.nb. There we see that the probability current
density indicates a probability flux moving in a circle, since only Jϕ is nonzero, while
Jθ = Jr = 0.

Together with the angular momentum in this state pointing very closely to the positive
z-axis, everything reminds us of a classical particle orbiting in a circle, such that at
all times r × p ≈ Lez. Note, however that it still is a steady state, so no charge or
current density changes at any time, and the electron already is “everywhere on the
circle” at all times. Nonetheless the picture of it orbiting the nucleus in the clockwise
or counterclockwise direction is quite appropriate.
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Figure 2: (left) Electron position probability density |ϕnℓm(x, y, 0)|2 in the z = 0
plane (bright yellow = high, blue = zero). (right) Complex phase of the wavefunction
arg[ϕnℓm] ∼ eimφ in the z = 0 plane (bright yellow 0, blue 2π). .
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Figure 3: (left) The same as left panel in Fig. 2, but concentrating on a 1D cut along x.
(right) Probability density |ϕnℓm(R, θ, 0)|2 along the polar angle θ using spherical polar
coordinates, with R fixed to the central radius of the ring visible in Fig. 2.

(c) Discuss the corresponding charge and current density in this state (without calcula-
tion), their time-dependences, and finally how you can reconcile all earlier results in
this question with a stable atom.

Solution: The charge density would be ρ(r) = −e|ϕ|2, where we have multiplied the
position probability density of the electron with its charge. Since ϕ is a stationary
state, nothing changes. Similarly, we can obtain the current density by multiplying
the probability current with the electron charge. Also that does not change. Since
Maxwell’s equations require either of these quantities to change for the emission of
radiation, the atom can remain stable in such an orbit within a classical picture of
electro-magnetism. When quantising the electro-magnetic field, you shall see that this
is no longer the case, which gives rise to spontaneous decay. Nonetheless, circular
Rydberg states can be very long lived, up to seconds!
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