
PHY 303, I-Semester 2023/24, Assignment 5 solution

(1) Wave function discontinuities [8 pts tot]: Consider the normalised wavefunction

Ψ(x) =

{
1√
L

for − L
2
≤ x ≤ L

2

0 otherwise
(1)

for L > 0, describing a particle with free Hamiltonian Ĥ = p̂2/(2m).

(a) Show formally that the function has two discontinuities, then find the corresponding
momentum space wavefunction Ψ(p) and draw both probability densities, for position
and for momentum measurements [5pts].
Solution: From the function it becomes apparent that the discontinuity check has to
be performed at the points −L

2
, L

2

for − L

2

lim
x→(−L

2
)−
Ψ(x) = 0 ̸= lim

x→(−L
2
)+
Ψ(x) =

1√
L

(2)

for
L

2

lim
x→(L

2
)+
Ψ(x) = 0 ̸= lim

x→(L
2
)−
Ψ(x) =

1√
L

(3)

Thus the function is discontinuous at both L
2
,−L

2
. To find the momentum space wave-

function Ψ(p), we take the Fourier Transform of Ψ(x)

Ψ(p) =
1√
2πℏ

∫ ∞

−∞
dxΨ(x)e−i pℏx

=
1√
2πℏ

∫ L
2

−L
2

dx
1√
L
e−i pℏx =

1√
2πℏ

√
L
sin(Lp

2ℏ )
pL
2ℏ

=

√
L√
2πℏ

sinc(
Lp

2ℏ
) where sinc(x) =

sin(x)

x
(4)

Figure 1: Discontinuous wavefunction Ψ(x).
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Figure 2: The momentum space wavefunction Ψ(p) of a step function is a sinc function.

(b) Show that the expectation value of the kinetic (=total) energy in the state is infinite
regardless of L, and discuss the implications of this for discontinuities in wavefunc-
tions [3pts].

Solution: The total energy can calculated by
∫∞
−∞

p2

2m
L
2πℏsin(

Lp
2ℏ )

2 1

(Lp
2ℏ )

2
dp. Which boils

down to K
∫∞
−∞ sin(wp)2 dp, where K and w are constants. This integral clearly di-

verges and thus the Kinetic energy and consequently the total energy diverges regard-
less of L. Thus, in order to have a meaningful finite energy, we require continuous
wavefunctions.

(2) Bound states on two delta-function potentials [10pts tot]: Consider a double
delta-function potential

V (x) = −α[δ(x− a) + δ(x+ a)]. (5)

(a) Show that a wavefunction solving the TISE for the potential above must satisfy the
condition

limϵ→0 [ϕ(a+ ϵ)′ − ϕ(a− ϵ)′] = −2m

ℏ2
αϕ(a). (6)

and a similar one involving location x = −a [2pts].
Solution: See lecture section 2.8.

(b) With that, show that the Ansatz

ϕ(x) =


Ae−κx for x ≤ −a,
B(eκx ± e−κx) for − a < x ≤ a,

Aeκx for x > a,

(7)

can solve the TISE. Why can we choose this Ansatz?. Find the parameter κ required
for this separately for ± and the equation linking it and the energy E. Solve that
equation, numerically if need be [6pts].
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Figure 3: Plot of potential in Eq. (5)

(c) Discuss all solutions to this equation graphically. How many bound states are there?
Is there always a bound state? [2 pts]
Solution: The argumentation why we can choose this Ansatz follows arguments we
have seen many times before. For E < 0 there can be at most bound states since a
particle at x → ±∞ would have a negative kinetic energy. The solution everywhere
except on the delta function spikes will be a superposition of exponentially decaying
and increasing solutions (as in Eq. (7) for −a < x ≤ a. However to the left of
the leftmost delta function, we cannot have the term ∼ e−κx since it blows up at
x → −∞ and similarly we can’t have a term ∼ eκx to the right of the rightmost
delta function. Finally we know from Assignment 3 Q1(b), that all solutions can be
taken as either symmetric or anti-symmetric, since the potential Eq. (5) is symmetric
(V (x) = V (−x)).

From the TISE we have κ =
√
2mE
ℏ .

first for even solutions:

ϕ(x) =


Ae−κx (x < a),

B (eκx + e−κx) (−a < x < a),

Aeκx (x < −a).

The remaining boundary (connection) conditions are:

Continuity at a:

Ae−κa = B
(
eκa + e−κa

)
⇒A = B

(
e2κa + 1

)
(8)

Discontinuous derivative at a:

limϵ→0 [ϕ(a+ ϵ)′ − ϕ(a− ϵ)′] = −2m

ℏ2
αϕ(a).

⇒− κAe−κa −B
(
κeκa − κe−κa

)
= −2mα

ℏ2
Ae−κa
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Figure 4: RHS and LHS of the transcendental equation (10).

⇒A+B
(
e2κa − 1

)
=

2mα

ℏ2κ
A

⇒B
(
e2κa − 1

)
= A

(
2mα

ℏ2κ
− 1

)
(9)

Combining both equations

B
(
e2κa − 1

)
= B

(
e2κa + 1

)(2mα

ℏ2κ
− 1

)
⇒e2κa − 1 = e2κa

(
2mα

ℏ2κ
− 1

)
+

2mα

ℏ2κ
− 1

⇒1 =
2mα

ℏ2κ
− 1 +

2mα

ℏ2κ
e−2κa

⇒ℏ2κ
mα

= 1 + e−2κa

⇒e−2κa =
ℏ2κ
mα

− 1. (10)

Eq.(10) is a transcendental equation for κ (and hence for E ). we will solve it graph-
ically: Let z ≡ 2κa, c ≡ ℏ2

2amα
, so e−z = cz − 1, we then show the left hand side and

right hand side of Eq. (10) separetely in Fig. 4, as a function of z.

From the graph, noting that c and z are both positive, we see that there is one (and
only one) solution (for even ψ ). If α = ℏ2

2ma
, so c = 1, the calculator gives z = 1.278,

so κ2 = −2mE
ℏ2 = z2

(2a)2
⇒ E = − (1.278)2

8

(
ℏ2
ma2

)
= −0.204

(
ℏ2
ma2

)
.

Now we look separately at odd solutions:

ϕ(x) =


Ae−κx (x < a),

B (eκx − e−κx) (−a < x < a),

Aeκx (x < −a).

The boundary condition:
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Figure 5: Plot for Eq. (13)

Continuity at a:

Ae−κa = B
(
eκa − e−κa

)
⇒A = B

(
e2κa − 1

)
(11)

Discontinuous derivative at a:

limϵ→0 [ϕ(a+ ϵ)′ − ϕ(a− ϵ)′] = −2m

ℏ2
αϕ(a).

⇒− κAe−κa −B
(
κeκa + κe−κa

)
= −2mα

ℏ2
Ae−κa

⇒A+B
(
e2κa + 1

)
=

2mα

ℏ2κ
A

⇒B
(
e2κa + 1

)
= A

(
2mα

ℏ2κ
− 1

)
(12)

Combining both equations

B
(
e2κa + 1

)
= B

(
e2κa − 1

)(2mα

ℏ2κ
− 1

)
⇒e2κa + 1 = e2κa

(
2mα

ℏ2κ
− 1

)
− 2mα

ℏ2κ
+ 1

⇒1 =
2mα

ℏ2κ
− 1− 2mα

ℏ2κ
e−2κa

⇒ℏ2κ
mα

= 1− e−2κa

⇒e−2κa = 1− ℏ2κ
mα

. (13)

We again inspect the transcendental equation e−z = 1 − cz graphically in Fig. 5).
This time there may or may not be a solution. Both graphs have their y-intercepts
at 1 , but if c is too large ( α too small), there may be no intersection (orange line),
whereas if c is smaller (green line) there will be. (Note that z = 0 ⇒ κ = 0 is not a
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solution, since ψ is then non-normalizable.) The slope of e−z (at z = 0) is -1 ; the
slope of (1− cz) is −c. So there is an odd solution ⇔ c < 1, or α > ℏ2/2ma.
Conclusion: One bound state if α ≤ ℏ2/2ma; two if α > ℏ2/2ma.
For c < 1

α =
ℏ2

ma
⇒ c =

1

2
·
{

Even: e−z = 1
2
z − 1 ⇒ z = 2.21772

Odd: e−z = 1− 1
2
z ⇒ z = 1.59362

(14)

Two bound state energy are given by

E = −0.615
(
ℏ2/ma2

)
;E = −0.317

(
ℏ2/ma2

)
. (15)

For c > 1

α =
ℏ2

4ma
⇒ c = 2. Only even: e−z = 2z−1 ⇒ z = 0.738835; E = −0.0682

(
ℏ2/ma2

)
.

(16)

(3) Measurements: [12 pts] Consider a Hilbertspace with three basis vectors | a ⟩, | b ⟩,
| c ⟩, and three operators:

Ô1 = κ (| a ⟩⟨ a | − | c ⟩⟨ c |) , (17)

Ô2 =
κ√
2
(| a ⟩⟨ b |+ | b ⟩⟨ a |+ | b ⟩⟨ c |+ | c ⟩⟨ b |) , (18)

Ô3 =
κ√
2
(−i| a ⟩⟨ b |+ i| b ⟩⟨ a |+−i| b ⟩⟨ c |+ i| c ⟩⟨ b |) . (19)

(20)

(a) Find the matrix representation of these operators in the basis {| a ⟩, | b ⟩, | c ⟩}, all
eigenvectors and eigenvalues for each and all commutators among those three opera-
tors.
The matrix conversion can be done by representing each three different kets along
the rows and the bras along the columns. Thus, element i, j would correspond to the
co-efficient of | i ⟩⟨ j |.

Ô1 =


⟨ a | ⟨ b | ⟨ c |

| a ⟩ κ 0 0
| b ⟩ 0 0 0
| c ⟩ 0 0 −κ

 (21)

Ô2 =
κ√
2

0 1 0
1 0 1
0 1 0

 (22)
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Ô3 =
κ√
2

0 −i 0
i 0 −i
0 i 0

 (23)

The normalised eigenvectors and eigenvalues for the respective matrices are:

For Ô1

v1 =

1
0
0

 λ1 = κ ; v2 =

0
1
0

 λ2 = 0 ; v3 =

0
0
1

 λ2 = −κ

For Ô2

v1 =
1√
2

−1
0
1

 λ1 = 0 ; v2 =
1

2

 1√
2
1

 λ2 = κ ; v3 =
1

2

 1

−
√
2

1

 λ2 = −κ

For Ô3

v1 =
1√
2

1
0
1

 λ1 = 0 ; v2 =
1

2

 −1

−i
√
2

1

 λ2 = κ ; v3 =
1

2

−1

i
√
2

1

 λ2 = −κ

Since we already found the matrix representations above, the commutators can be
calculated using matrix multiplications, yielding:[

Ô2, Ô3

]
= iκÔ1 ;

[
Ô3, Ô1

]
= iκÔ2 ;

[
Ô1, Ô2

]
= iκÔ3 (24)

(b) From that derive an uncertainty relation between the three observables described by
Ôj. Also discuss uncertainties between Ô2 and Ô⊥ ≡ Ô2

1 + Ô2
3.

Solution: For general operators, the uncertainty principle is

σAσB ≥
√(

1
2i
⟨[Â, B̂]⟩

)2

. We can insert the commutation relations of operators Ôj,

and find for example σÔ2
σÔ3

≥ |1
2
⟨Ô1⟩| = 0 from the first equation in (24). This in

general (in general ⟨Ô1⟩ will be nonzero), we cannot know the observables for Ô2 and
Ô3 simultaneously to arbitrary precision. Similar relations arise from the other two
commutators.

Now to check the commutator of Ô2 and Ô⊥[
Ô2, Ô⊥

]
=

[
Ô2, Ô

2
1

]
+
[
Ô2, Ô

2
1

]
=

[
Ô2, Ô1

]
Ô1 + Ô1

[
Ô2, Ô1

]
+
[
Ô2, Ô3

]
Ô3 + Ô3

[
Ô2, Ô3

]
= −iÔ3Ô1 − iÔ1Ô3 + iÔ1Ô3 + iÔ3Ô1 = 0 (25)
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Thus the uncertainty relation is σÔ2
σÔ⊥

≥ 0, and observables corresponding to these
operators can be known simultaneously perfectly.

(c) Suppose the system is initially in the state |Ψ ⟩ = (| a ⟩ − | b ⟩+ i| c ⟩)/
√
3. From this

discuss the following sequence:

(i) What is the probability to find o2 = 0,±κ upon measuring Ô2?

(ii) Suppose we measured o2 = κ, what is the probability to measure o2 = κ if the
measurement is repeated immediately after the first?

(iii) Immediately following that, we measure Ô1 and suppose we find o1 = κ. Im-
mediately after this step, we measure Ô2 again, which answers can we find, and
with which probabilty?

Solution: (i)
Take the projections of the state onto the three eigenvectors of Ô2

P (o2 = 0) = |⟨ v1 |Ψ ⟩|2 =
(
| − 1√

6
+

i√
6
|
)2

=
1

3

P (o2 = κ) = |⟨ v2 |Ψ ⟩|2 = | 1

2
√
3
− 1

√
2

2
√
3
+ i

1

2
√
6
|2 = 1

6
(2−

√
2)

P (o2 = −κ) = |⟨ v3 |Ψ ⟩|2 = | 1

2
√
3
+

√
2

2
√
3
+ i

1

2
√
3
|2 = 1

6
(2 +

√
2) (26)

(ii) Immediately after the measurement of o2 = κ the state has collapsed onto the
eigenvector v2. Thus the probability to measure o2 = κ in an immediate repetition of
this measurement is 1.
(iii) If we have found o1 = κ in this latest measurement, the state has collapsed again

this time into |Ψinst ⟩ = | a ⟩ with column vector representation

1
0
0

. Now to find

the probabilities of outcomes of measurements of Ô2, we newly take the projection of
this stage onto the eigenvectors of Ô2, which are:

P (o2 = 0) = ⟨ v1 |Ψinst ⟩ =
1

2
,

P (o2 = κ) = ⟨ v2 |Ψinst ⟩ =
1

4
,

P (o2 = −κ) = ⟨ v3 |Ψinst ⟩ =
1

4
. (27)

Importantly, measuring Ô1 in between the first and second measurement of Ô2 as
changed the probability to find o2 = κ from 100% (directly after the first measurement)
to only 25 % now.
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(d) What changes if you swap the final measurement of Ô1 in the list above with a
measurement of Ô⊥? Discuss all similarities and differences, and relate whatever you
find to the uncertainty relations you have derived earlier.
Solution: Observe from 4(b) that Ô2 commutes with Ô⊥ and thus the uncertainty
between their measurements is σo2σo⊥ ≥ 0. Thus, the observables are compatible
a.k.a both can be measured at the same time without affecting each other. Hence,
measurement of o⊥ does not affect the probabilities of measuring the value of o2 which
was given as 100% for o2 = κ after the first measurement, and remains 100% also
after measuring Ô⊥ in between. You can verify explicitly that the eigenvector | v2 ⟩ of
Ô2 is also an eigenvector of Ô⊥.

(4) Box inside a box: [10pts] Consider the infinite square well potential, with an
additional step potential inside:

V̄ (x) =



∞ x ≤ 0,

0 0 < x ≤ a
2
− L

2
,

V0 > 0 a
2
− L

2
< x ≤ a

2
+ L

2

0 a
2
+ L

2
< x ≤ a

∞ x > a.

(28)

Let us assume that V0 <
ℏ2π2

2ma2
. Let us denote the usual infinite square well potential

without that step (as in lecture notes Eq. (2.10)) by V (x), and define two Hamiltonians
ˆ̄H = T̂ + V̄ (x) and Ĥ = T̂ + V (x), where T̂ is the kinetic energy operator of a particle of
mass m in one dimension.

(a) Make a drawing of this potential. Argue why all eigenstates ϕ̄n(x) of the present

Hamiltonian ˆ̄H can be expressed in terms of eigenstates ϕn(x) of the usual Hamilto-
nian Ĥ. Then find an argument, why it might be justified, for the above low value of

V0, to attempt to express the new lowest energy eigenstates of ˆ̄H only using the M
lowest energy eigenstates of Ĥ, for small M , let’s say M = 3.
Solution: The drawing of the potential is shown in Fig. 6.

The old basis are eigenstate of the old Hamiltonian (Ĥ) which is a hermitian operator
thus the eigenstates (ϕn(x)) forms a basis for any integrable function between [0, a].

We expect eigenfunctions of the new Hamiltonian ( ˆ̄H) to vanish outside the range
[0, a] for the same reasons that they vanish there for the old Hamiltonian (Ĥ), hence
each eigenfunction of the new Hamiltonian can be expanded in terms of those of the
old one.

In the limit discussed above if we expand the new states in terms of old ones and
take the (kinetic) energy expectation value of the new states, the ground-state cannot
have a too large contribution of high energy old states, since this would give it a
very high energy itself. For this reason we can write the new ground-state as linear
combination of the lowest energy eigenstates of Ĥ.
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Figure 6: Potential given in Eq. (28), with a small steplike perturbation inside an infinite
square well.

(b) Write the present Hamiltonian ˆ̄H explicitly in matrix form, using only the M = 3
lowest energy eigenstates of Ĥ as a basis (i.e. Eq. (2.18) of lecture notes, for n =
1, 2, 3). Explicitly find a matrix in terms of parameters, solving any integrations that
might be required.
Solution:

We want to find the Matrix form of ˆ̄H in the basis of Ĥ, effectively that requires to

calculate H̄mn = ⟨ϕm | ˆ̄H|ϕn ⟩ with m,n = 1, 2, 3. Let us separate ˆ̄H as Ĥ + ˆ̄V . Now
the matrix form becomes H̄mn = Hmn+ V̄mn. In |ϕn ⟩ basis we know the H is diagonal
with corresponding energy value i.e.

Hmn =

{
En m = n,

0 m ̸= n.
(29)

Now we need to find the other missing quantity V̄mn = ⟨ϕm | ˆ̄V |ϕn ⟩. In terms of
integration we will have

V̄mn =

∫ a/2+L/2

a/2−L/2

ϕ∗
m(x)V0ϕn(x)dx

(30)

Finding V̄mm

V̄mm =

∫ a/2+L/2

a/2−L/2

ϕ∗
1(x)V0ϕ1(x)dx

= V0
2

a

∫ a/2+L/2

a/2−L/2

sin
(mπx

a

)2

dx
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= V0
1

a

∫ a/2+L/2

a/2−L/2

[
1− cos

(
2mπx

a

)]
dx

= V0
L

a
− V0

1

a

∫ a/2+L/2

a/2−L/2

cos

(
2mπx

a

)
dx

= V0
L

a
− V0

1

2mπ

[
sin

(
2mπx

a

)]a/2+L/2

a/2−L/2

= V0
L

a
− V0

1

2mπ

[
sin

(
mπ +

mπL

a

)
− sin

(
mπ − mπL

a

)]
= V0

[
L

a
− (−1)m

mπ
sin

(
mπL

a

)]
(31)

For m = n+1 and n = m+1, from symmetry around a/2 we know that this integral
will be zero. As around a/2 the eigenfuctions are either even or odd, making the
integral vanishes when integrated around a even range. i.e. V̄12 = V̄21 = V̄32 = V̄23 = 0.

lastly

V̄13 = V̄31 =

∫ a/2+L/2

a/2−L/2

ϕ∗
1(x)V0ϕ3(x)dx

= V0
2

a

∫ a/2+L/2

a/2−L/2

sin
(πx
a

)
sin

(
3πx

a

)
dx

= V0
1

a

∫ a/2+L/2

a/2−L/2

cos

(
2πx

a

)
− cos

(
4πx

a

)

= V0

[
1

2π
sin

(
2πx

a

)
− 1

4π
sin

(
4πx

a

)]a/2+L/2

a/2−L/2

= −
4V0 sin

(
πL
2a

)
cos3

(
πL
2a

)
π

(32)

Combining all We get H̄.

H̄ =


π2ℏ2
2a2m

+ V0

(
L
a
+

sin(πL
a )

π

)
0 −4V0 sin(πL

2a ) cos3(
πL
2a )

π

0 2π2ℏ2
a2m

+ V0

(
L
a
− sin( 2πL

a )
2π

)
0

−4V0 sin(πL
2a ) cos3(

πL
2a )

π
0 9π2ℏ2

2a2m
+ V0

(
L
a
+

sin( 3πL
a )

3π

)


(33)

(c) Using that matrix representation, find the new eigenstates and eigenenergies, make a
drawing of the former, and compare the latter explicitly with the eigenenergies of Ĥ.
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Solution: See the Mathematica file Assignment5 program solution v1.nb for solu-
tion. There we find for parameter a = 6, L = 2, V0 = 0.07, ℏ = 1 and m = 1 the new
ground state to be

¯ϕ1(x) = 0.99964ϕ1(x) + 0.0268382 ∗ ϕ3(x) (34)

From these coefficient it is clear that the ground state of H̄ is almost equal to ground
state of H with overlap of 0.99964.The important point to notice is that for new ground
state the coupling to the state n = 2 is 0. From comparison in Table 1 note that the

Table 1: Comparing E and Ē

n = 1 n = 2 n = 3
E 0.137078 0.548311 1.2337
Ē 0.178931 0.561996 1.25781

ground state energy has increased the most while higher state energies increases very
little.

(d) Now adapt the code which was provided for Assignment 3 Q4, to numerically solve

the TISE, to numerically find eigenstates and energies of ˆ̄H under conditions as
discussed above, and thus verify your calculations. Choose parameters for which at
least some of the lowest three new eigenstates visibly differ from the old ones, and
discuss physical reasons for the differences (or absence thereof).
Solution: See the Mathematica file Assignment5 program solution v1.nb for full
solution and discussion.
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