
PHY 303, I-Semester 2023/24, Assignment 4 solution

(1) Anharmonic oscillator [8pts]:

(a) The Hamiltonian for an oscillator of mass m with an anharmonic potential is

Ĥ =
p̂2

2m
+

1

2
mω2x2 + κx4, (1)

for κ > 0. Write this Hamiltonian in terms of the same ladder operators that we
defined for the harmonic oscillator [4pts].

Solution: In this assignment solution we will use the alternate (and very common)
notation for the ladder operators as â+ = â† and â− = â,(respectively also called
creation and annihilation operators in second quantization.... If confused just replace
the ladder operators you are familiar with beneath). The x̂, p̂ can be written in the
form of ladder operators as

x̂ = σ̄(â+ â†) where σ̄ =

√
ℏ

2mω
(2)

p̂ = −iℏ
σ̄
(â− â†) (3)

Notes:

• This uses a re-definition of ladder operators in the lecture notes that happened
on 9.9.23, please redownload. The previous ones only differ by a complex phase,
but in Eq. (3) this is important.

• To save some writing we defined σ̄ = σ/
√
2, where σ =

√
ℏ

mω
is the usual

ground-state width of the oscillator.

Thus, the terms in the Hamiltonian can be expanded by substituting the above expres-
sions.

x̂4 = σ̄4[(â+ â†)] (4)

x̂4 = σ̄4
[(
a4 + a3a† + a2a†a+ a2a†2

)
+ aa†

(
a2 + a†a+ aa† + a†2

)
+
(
a†a3 + a†a2a† + a†aa†a+ a†aa†2

)
+a†2

(
a2 + a†a+ aa† + a†2

)]
(5)

Now, using the commutator [â, â†] = 1

x̂4 = σ̄4
[
â4 + â†4 + 4â†3â+ 4â†â3 + 6â†2â2 + 6(â2 + â†2) + 12â†â+ 3

]
(6)

Similarly,

x̂2 = σ̄2
[
â2 + ââ† + â†â+ â†2

]
= σ̄2

[
â2 + 2ââ† + 1 + â†2

]
(7)

p̂2 = −ℏ2

σ̄2

[
â2 − ââ† − â†â+ â†2

]
= −ℏ2

σ̄2

[
â2 − 2ââ† − 1 + â†2

]
(8)
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Thus the Hamiltonian can now be expressed in terms of the ladder operators (the first
two terms were already provided in the lecture notes):

Ĥ = ℏω
[
â†â+

1

2

]
+ κσ̄4

[
â4 + â†4 + 4â†3â+ 4â†â3 + 6â†2â2 + 6(â2 + â†2) + 12â†â+ 3

]
. (9)

(b) Suppose the state of the particle in the anharmonic oscillator Eq. (1) is described by
the wavefunction

Ψ(x) =
1

(πσ2)1/4
e−

x2

2σ2 , (10)

where σ =
√

ℏ/(mω). Evaluate the expectation value of energy ⟨Ĥ⟩ in state (10) for
Hamiltonian (1) using two different methods: (i) Writing the corresponding integra-
tion over x and finding the result of the integral. (ii) Using your result of (a), writing
Ψ(x) and all functions appearing in an integral abstractly in terms of harmonic os-
cillator eigenstates ϕn(x) [from Eq. (2.65) of the lecture, but you do not need these
details] [4pts].

Solution: (i) We know that the wavefunction given, ψ(x) = ϕ0(x), is the zeroth eigen-
state for the harmonic oscillator. (See lecture notes) We can use that to write:

⟨Ĥ⟩ =
∫ ∞

−∞
ψ(x)†Ĥψ(x)dx (11)

⟨Ĥ⟩ =
∫ ∞

−∞
ψ(x)†(Ĥharmonic + κx̂4)ψ(x)dx (12)

⟨Ĥ⟩ = ℏω
2

+ κ

∫ ∞

−∞

1

(πσ2)1/2
x4 exp(−x

2

σ2
)dx (13)

⟨Ĥ⟩ = ℏω
2

+ κ
3σ2

4
(14)

⟨Ĥ⟩ = ℏω
2

+
3κℏ
4mω

(15)

(ii) We can use again that the given state is an eigenstate of the Harmonic oscil-
lator Hamiltonian, which allows us to use the relations in Eq. (2.55) of the lecture
notes, and âϕ0 = 0. These help us to comfortably evaluate the second term of the
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Hamiltonian:

⟨Ĥ⟩ =
∫
dxϕ∗

0(x)Ĥϕ0(x)dx (16)

⟨Ĥ⟩ =
∫
dxϕ∗

0ℏω(â†â+
1

2
)ϕ0

+ κ
ℏ

4mω

∫
dxϕ∗

0

(
â4 + â†4 + 4â†3â+ 4â†â3 + 6â†2â2 + 6(â2 + â†2) + 12â†â+ 3

)
ϕ0

(17)

=
ℏω
2

+ κ
ℏ

4mω

∫
dxϕ∗

0 (0 + c1ϕ4 + 0 + 0 + 6× 0 + 6(0 + c2ϕ2) + 12× 0 + 3ϕ0)

(18)

⟨Ĥ⟩ = ℏω
2

+
3ℏκ
4mω

. (19)

Above ck are numerical constants coming from the
√
n(+1) prefactors in Eq. (2.65)

which are not important since they drop out in the last line, where we use that
oscillator eigenfunctions of different n are orthogonal.
Important Point: Beware of the potential confusion that the ϕn used throughout
are eigenstates of the harmonic oscillator, not the anharmonic one for which the
Hamiltonian is Eq. (1). Doing that can sometimes be useful, due to the nice
properties of harmonic oscillator eigenstates and ladder operators. Note that we have
not actually found the actual eigenstates or eigenenergies of the Hamiltonian (1).
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Figure 1: Position probability density in a high lying SHO state (n = 20) and the classical
probability distribution. We see that the average amplitude of the quantum state precisely
follows ρ(x).

(2) Correspondence principle [10pts]:

(a) Make your own exact figure for the drawing in example 15 in mathematica. In partic-
ular find xctp in term of the oscillator energy, then choose an energy E corresponding
to a high lying harmonic oscillator state (say e.g. n0 = 20) and plot ρ(x) on top of
|ϕn0(x)|2 [5 pts].

Solution: The main part is finding out xctp defined in lecture notes and noticing that
it is equal to the oscillation amplitude. So we have 1

2
mω2x2ctp = E. Using this and

the definition of ρ(x) = 1

πω
√

x2
ctp−x2

we could find the classical probability distribution.

The Mathematica file Assignment4 program solution v2.nb contains the solution;
by running it for n = 20, we reproduce the plot given in example 15 shown in figure
1.

(b) Now take the average of the probability density over a few states in the vicinity of E
(say n ± 2) thus calculating ¯ρ(x) =

∑
n;|n−n0|≤2 |ϕn(x)|2 and compare again. Discuss

what you find. Where does it agree, where does it not agree? How does agreement
change when n0 is varied? [5 pts].

Solution: See Assignment4 program solution v2.nb for the solution, also shown
in Fig. 2. We see that they both agree quite well in the central range, and as n0 is
increased the agreement in the centre range increases even further. However close
to the classical turning point xctp deviations remain For |x| < |xctp| these might dis-
appear if we average over a larger range of oscillator states, for |x| > |xctp| the two
distributions can never agree, since the classical particle cannot reach there.
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Figure 2: The classical and quantum probability distribution, when averaging the latter
over 5 adjacent oscillator quantum numbers, [n0 − 2, n0 − 1, n0, n0 + 1, n0 + 2]. We see
that they both agree quite well, and as n0 is increased the agreement in the centre range
increases even further.

(3) Harmonic oscillator [10 pts]

(a) Find the expectation values and uncertainties of x̂ and p̂ in each of the eigenstates of
the Harmonic oscillator, and discuss the product of both uncertainties. [6pts]

Solution:

x̂ = σ̄(â+ â†) σ̄ =

√
ℏ

2mω
(20)

p̂ = −iℏ
σ̄
(â− â†) (21)

⟨x̂⟩ =
∫
σϕ∗

n(â+ â†)ϕndx (22)

⟨x̂⟩ = σ̄(
√
nδn,n−1 +

√
n+ 1δn,n+1) = 0 (23)

⟨x̂2⟩ = σ̄2

∫
ϕ∗
n(â

2 + ââ† + â†â+ â†2)ϕndx (24)

⟨x̂2⟩ = σ̄2(n+ 1 + n)δn,n =
ℏ
mω

(n+
1

2
) (25)

σx =

√
ℏ
mω

(n+
1

2
) (26)

⟨p̂⟩ = −iℏ
σ̄

∫
ϕ∗
n(â− â†)ϕn = −iℏ

σ̄
(
√
nδn,n−1 −

√
n+ 1δn,n+1) = 0 (27)

⟨p̂2⟩ = −ℏ2

σ̄2

∫
ϕ∗
n(â

2 − ââ† − â†â+ â†2)ϕn (28)
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⟨p̂2⟩ = −ℏ2

σ̄2
(−(n+ 1)− n) = ℏmω(n+

1

2
) (29)

σp =

√
ℏmω(n+

1

2
) (30)

The uncertainty product is thus:

σxσp = ℏ(n+
1

2
). (31)

We see that it takes the minimal value allowed by Heisenberg’s uncertainty principle
only at n = 0, while for all the higher n it exceeds the limit, linearly increasing in n.

(b) From that show the virial theorem ⟨T̂ ⟩ = ⟨V̂ ⟩ relating the expectation values of kinetic
and potential energies. [3pts]

Solution:

⟨T̂ ⟩ = 1

2m
⟨p̂2⟩ = ℏω

2
(n+

1

2
) (32)

⟨V̂ ⟩ = mω2

2
⟨x̂2⟩ = ℏω

2
(n+

1

2
) (33)

∴ ⟨T̂ ⟩ = ⟨V̂ ⟩ (34)

(c) Now find the expectation value of the position in the superposition state Ψ(x) =
(ϕ0(x)+ϕ1(x))/

√
2 at all times t > 0. [3pts] With which frequency does it oscillate?

Solution: Using the time evolution of the superposition state
ψ(x, t) = e−iE0t/ℏϕ0(x)/

√
2 + e−iE1t/ℏϕ1(x)/

√
2

⟨x̂⟩ =
∫
ψ∗(x, t)σ̄(â+ â†)ψ(x, t) (35)

⟨x̂⟩ = σ̄

2

∫
(eiE0t/ℏϕ0 + eiE1t/ℏϕ1)(â+ â†)(e−iE0t/ℏϕ0(x) + e−iE1t/ℏϕ1(x)) (36)

⟨x̂⟩ = σ̄

2
(e−i(E1−E0)t/ℏ + e−i(E0−E1)t/ℏ) = σ̄ cos((E1 − E0)t/ℏ) (37)

⟨x̂⟩ = σ̄cos(ωt) (38)

Thus the mean position oscillates with frequency ω as expected for the Harmonic
oscillator.

(4) Quantum dynamics: [10pts] The code Assignment4 program draft v1.nb is set
up to solve the TDSE. You only have to define a potential V (x) and an initial state
Ψ(x, t = 0) at the indicated places.
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Design your own question from here. I want you to: (a) make thorough contact with
at least one concept of quantum dynamics encountered in the lecture so far. You can
reproduce an example, assignment or tutorial question, analytical result, anything from
the selection of week 3-5 problems. The only constraint is to look at genuine dynamics,
i.e. something significant should vary in time, do not just look at a stationary state (even
though you might want to do that for testing and warm up). (b): Then extend that
concept towards the unknown (by adding multiple copies of some feature in the potential,
combining two features etc.). For both make many plots, verify whichever analytical
results you may know, and extensively analyse your findings.

Please be careful about the following list of pitfalls

• We set ℏ = m = 1 to avoid any large unitful numbers. Thus mainly use numbers
“of order one (0.1-10)” for definitions of potentials, initial states, spatial ranges and
times.

• Numerics does not like infinities, hence if you want to use V (x) → ∞, just make it
larger than everything else (e.g. 100).

• Numerics also does not like discontinuities, rather use (tanh(x/ξ) + 1)/2 with finite
and visible ξ than θ(x) (Heaviside step function).

• The calculation will take longer, if you do brutal things to your wavefunction, or you
go towards very “classical states” (very small quantum wavelength relative to Lmax).
Best avoid these cases. If the solution has not been calculated after a few minutes,
best change parameters. The more brutal dynamics you do, the more points you
need (Increase MinPoints, MaxPoints).

• One way to see if anything goes wrong from the start, is set tfin to a very low value.

• avoid wavefunctions hitting the edge of your domain −Lmax or Lmax. If that happens
the calculation ceases to make sense. To avoid it, enlarge Lmax, add a potential or
decrease tfin.

• Any numerical solution can be wrong. To make sure it is converged in
terms of discretisation, check it does not change when you increase the num-
ber of points (MinPoints, MaxPoints) or increase the tolerances (AccuracyGoal,
PrecisionGoal). Other good checks are whether energy ⟨Ĥ⟩ or normalisation of
the wavefunction stay conserved.

After the assignment, let us know about any additional pitfalls you encountered that were
not listed here.

Solution: See Assignment4 program solution v2.nb for the solution. We have used
the program to solve for the wobbling harmonic oscillator, which we have seen previously
in tutorial 3 Question 2.

(5) Schrödinger’s equation in momentum space: [6 pts] Suppose a particle of mass

m can move in one dimension under the influence of the potential V (x). In Eq. (2.93) of

the lecture, we introduced the momentum space representation ˜ϕ(k) of the wavefunction.
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(a) Find also a momentum space representation of the TISE which a momentum space
wavefunction has to fulfill.1 [3pts]

(b) Discuss the physical meaning of each term. Discuss what happens to the momentum
probability distribution for the case V (x) = 0, or V (x) ̸= 0. You may want to consider
the change of the momentum space wavefunction during an infinitesimal time element
dt [3pts].

Solution: 5(a) We start with the TDSE in position space

iℏ
∂

∂t
ϕ(x) =

(
− ℏ2

2m

∂2

∂x2
+ V (x)

)
ϕ(x). (39)

To turn this into an equation for the momentum space wavefunction

ϕ̃(p) =
1√
2πℏ

∫ ∞

−∞
dxe−i pℏxϕ(x), (40)

we take the Fourier transform of both sides of Eq. (39). Let us do this step by step:

1√
2πℏ

∫ ∞

−∞
dxe−i pℏx

[
iℏ
∂

∂t
ϕ(x)

]
=

1√
2πℏ

∫ ∞

−∞
dxe−i pℏx

[(
− ℏ2

2m

∂2

∂x2
+ V (x)

)
ϕ(x)

]

(41)

iℏ
∂

∂t

(
1√
2πℏ

∫ ∞

−∞
dxe−i pℏxϕ(x)

)
︸ ︷︷ ︸

=ϕ̃(p)

= − ℏ2

2m

1√
2πℏ

∫ ∞

−∞
dxe−i pℏx

∂2

∂x2
ϕ(x)︸ ︷︷ ︸

I.b.P.
=

∫∞
−∞ dx

∂2

∂x2
e−i pℏx︸ ︷︷ ︸

=(−ip/ℏ)2e−i
p
ℏx

ϕ(x)

+
1√
2πℏ

∫ ∞

−∞
dx e−i pℏxV (x)ϕ(x). (42)

To change the first term on the right hand side we used integration by parts twice, not
getting any boundary terms since ϕ(x) and ϕ′(x) must vanish for x → ±∞. Finally we
use again the definition Eq. (40), and its inverse (Eq. (2.92) of lecture) to reach:

iℏ
∂

∂t
ϕ̃(p) =

p2

2m
ϕ̃(p) +

1√
2πℏ

∫ ∞

−∞
dx e−i pℏxV (x)

1√
2πℏ

∫ ∞

−∞
dp′ ei

p′
ℏ xϕ̃(p′). (43)

1The TISE 1(.62) that we have considered so far is said to be in the “position space representation”.

Its momentum space variant should only have iℏ ∂
∂t

˜ϕ(k, t) = · · · as the left hand side.
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Note that we had to be careful not to use p as the integration variable for the inverse FT,
since it is already used in the rest of the equation. This is why we used p′ instead. We
finally define the Fourier transformed potential

Ṽ (p− p′) =
1√
2πℏ

∫
dxV (x)e−i

(p−p′)
ℏ x (44)

so that we can write

iℏ
∂

∂t
ϕ̃(p) =

p2

2m
ϕ̃(p) +

1√
2πℏ

∫ ∞

−∞
dp′ Ṽ (p− p′)ϕ̃(p′). (45)

5(b): The first term represents the contribution from kinetic energy, which we say is
“diagonal” in the momentum representation: It just multiplies ϕ(p) with p2, for which we
do not need to know ϕ(p′) for any p′ ̸= p. In contrast for calculating ∂2

∂x2ϕ(x) in the position
representation, you DO need to know ϕ(x) at x′ ̸= x (to calculate the derivative). The
second term, from the potential energy was local in the position representation (V (x)ϕ(x)),
but has now become nonlocal. We need to know ϕ̃(p′) at p′ ̸= p. The equation Eq. (45)
can guide us to the following interpretation of the Fourier transformed potential Ṽ (p−p′).
Since Ṽ (p − p′) governs how much ϕ̃(p) changes when ϕ̃(p′) is nonzero, it must contain
information about how likely the momentum-transfer from p′ to p is, due to the potential
V (x).
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