
PHY 303, I-Semester 2023/24, Assignment 3

Instructor: Sebastian Wüster
Due-date: 10. Sept 2023

Note the asymmetric distribution of marks (and expected effort) between Q1-Q4 in this
assignment.

(1) Solutions of the TISE [6 pts]: We want to explore some important properties of
all solutions of the TISE.

(a) Show that for all solution of Eq. (1.62), we require En > Vmin, where Vmin =
minxV (x), i.e. the minimal value taken by the potential energy [2pts].

(b) Show, that for a potential energy that is symmetric, V (x) = V (−x), you can always
choose all solutions of the TISE to be either symmetric or anti-symmetric [2pts].

(c) Show that all solutions of the TISE must be continuously differentiable at all x where
the potential does not make an infinite jump [2pts].

Solution: 1(a)- The TISE is[
− ℏ2

2m

d2

dx2
+ V (x)

]
ϕn(x) = Ĥϕn(x) = Enϕn(x) (1)

d2

dx2
ϕn(x) =

2m

ℏ2
[V (x)− En]︸ ︷︷ ︸

≡∆

ϕn(x) = 0 (2)

For [En − V (x)] < 0 the solution is oscillatory and for [En − V (x)] > 0 is is exponential.
If E < Vmin, then ∆ defined above is positive for all x and hence d2

dx2ϕ(x) and ϕ(x) have
the same sign for all x. Hence ϕ(x) always curves away from the x-axis (you can try this
with any random drawing). This implies that |ϕ(x)| becomes larger as x increases. So
ϕ(x) ↛ 0 as x → ±∞, hence for E < Vmin the solution ϕn(x) cannot be normalizable.
Therefore we always require E > Vmin.

1(b) - The TISE is

d2

dx2
ϕn(x) +

2m

ℏ
[En − V (x)]ϕn(x) = 0 (3)

Let us substitute −x everywhere for x:

d2

dx2
ϕn(−x) +

2m

ℏ

En − V (−x)︸ ︷︷ ︸
=V (x)

ϕn(−x) = 0. (4)

This shows that ϕ(−x) is also a solution of the same TISE with the same energy as ϕ(x).
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However we can show that if two solutions of the TISE in one dimension have the
same energy, they must be linearly dependent. Assume we have two different solutions
with eigenvalue E, then [

− ℏ2

2m

d2

dx2
+ V (x)

]
ϕ1(x) = Eϕ1(x),[

− ℏ2

2m

d2

dx2
+ V (x)

]
ϕ2(x) = Eϕ2(x). (5)

Multiplying the first equation by ϕ2 and the second by ϕ1 and subtracting one from the
other, we get:

ϕ1(x)
d2

dx2
ϕ2(x)− ϕ2(x)

d2

dx2
ϕ1(x) = 0 ⇔

d

dx

[
ϕ1(x)

d

dx
ϕ2(x)− ϕ2(x)

d

dx
ϕ1(x)

]
= 0 (6)

Integrating the latter over all x gives

ϕ1(x)
d

dx
ϕ2(x)− ϕ2(x)

d

dx
ϕ1(x) = const (7)

Since ϕk → 0 at |x| → ∞, in order to be normalizable, we know that const = 0. Then we
can write

ϕ1(x)
d

dx
ϕ2(x) = ϕ2(x)

d

dx
ϕ1(x) ⇔

ϕ′
2(x)

ϕ2(x)
=

ϕ′
1(x)

ϕ1(x)
(8)

which we can integrate on both sides to give log ϕ2(x) = log ϕ1(x) + const or ϕ2(x) =
cϕ1(x).

Applied to the earlier two solutions ϕ(x) and ϕ(−x), this means ϕ(x) = cϕ(−x). Since
ϕ(x) = ϕ(− − x) = c2ϕ(x), we require c = ±1, so we have now shown that the solution
must be either symmetric or anti-symmetric.

1(c)- We know that the solution of a TISE which is a second-order (in x) differential
equation ϕn(x) has to be a continuous function. The TISE is[

− ℏ2

2m

d2

dx2
+ V (x)

]
ϕn(x) = Enϕn(x)

Observe that the RHS of the equation is continuous as established previously. Thus the
LHS and consequently the double-derivative should also yield a continuous function. For
the double-derivate ϕ′′

n(x) to be defined at all x and also to yield a continuous function,
ϕ′(x) has to be continuous at all x.
Thus ϕn(x) and ϕ′

n(x) are both continuous at all x =⇒ ∀n, ϕn(x) is continuously
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differentiable at all x.

(2) Zero point motion [8pts]: Consider a particle of mass m moving in one dimension
in a harmonic oscillator potential V (x) = 1

2
mω2x2.

(a) Treating the particle classically, with phase space coordinates [x(t), p(t)], what is its
state of lowest possible energy, and what dynamics x(t), p(t) does this correspond to?
[2 pts]

(b) Now changing to quantum mechanics, what is the state of lowest possible energy?
What can you say about position and momentum probability distributions in this
case? What is the fundamental difference to the classical oscillator? What quantum
mechanical theorem enforces this difference? [6 pts]

Solution : 2(a)- The energy of the harmonic oscillator is given as E = p2

2m
+ 1

2
mω2x2.

Drawing the energy in phase space would yield a parabola with Energy along Z-axis and
[x(t)] along X-axis and [p(t)] along Y-axis. Thus, one can conclude that the lowest possible
energy in the phase space would correspond to [x(t)]=0 and [p(t)]=0, thus the particle is
at the origin without moving, and remains like that.

2(b) - The lowest energy state is at the energy E = ℏω
2

with the wavefunction

ϕ0(x) = N e−
1
2

x2

σ2 = 1

(σ2π)1/4
e−

1
2

x2

σ2 . Thus the position probability distribution is a gaus-

sian |ϕ|2 = e−x2/σ2

(σ2π)1/2
. The momentum distribution can be calculated by taking the Fourier

transform of ϕ(x).

ϕ̃(p) =
1√
2πℏ

∫ ∞

−∞
dxϕ(x)e−ipx/ℏ

=
1√
2πℏ

∫ ∞

−∞
dx

1

(σ2π)1/4
e−

1
2

x2

σ2 e−ipx/ℏ

=
σ1/2

(π2ℏ)1/2
e

−p2σ2

2ℏ2

The fundamental difference between these results and the classical one, is that most likely
the particle will NOT be at the origin with momentum zero. We say that momentum and
position suffer “zero point fluctuations” hence the probability distributions have nonzero
width centred on x = 0 and p = 0. The quantum mechanical theorem that enforces this is
Heisenberg’s uncertainty relation, which would prohibit a state with x ≡ 0 and p ≡ 0 and
no uncertainty, since then σx = σp = 0. The fact that x = 0 and p = 0 are not allowed,
now also is the reason for the lowest accessible energy to be E = ℏω

2
> 0.

(3) Schrödinger’s equation in momentum space: [6 pts] → see solution of
assignment 4
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(4) Infinite square well potential with step: [20pts] Consider the Infinite square
well potential with a potential step given by

V (x) =


∞ x < −a,

0 −a ≤ x < 0,

V0 > 0 0 ≤ x < b,

∞ x > b

(9)

for 0 < a < b.

(4a) Make a drawing of this potential and then find all allowed eigenstates ϕn and energies
En > 0. Hints: You may use mathematica where possible, in particular for solving any
transcendental equations you might encounter numerically (and! graphically), for a few
cases. Also best work with a real Ansatz, and phase shift your trigonometric functions so
that the boundary conditions at x = −a, b can be easily build in. Just describe how you
can normalise your functions in the end, you can do this numerically in part (c). [8 pts]

Figure 1: potential given in equation (9).

Solution: The potential given in equation (9) is shown in Figure 1. To find the allowed
eigenstates and energies En > 0, we divide the whole region into two region as shown in
figure. Here we will treat region I and II separately and then enforce boundary condition
at x = −a, 0, b.

In each region we have the time independent Schrödinger equation as given in lecture
notes equation (2.21)

∂2

∂x2
ϕ(r)
n (x) = −

(
k(r)
n

)2
ϕ(r)
n (x) (10)

here r ∈ {I, II} each region with wavenumber k
(r)
n =

√
2m [En − V (x)]/ℏ

ϕ(I)
n (x) = A sin

[
k(I)
n x

]
+B cos

[
k(I)
n x

]
, for − a ≤ x < 0 (11)

ϕ(II)
n (x) = C sin

[
k(II)
n x

]
+D cos

[
k(II)
n x

]
, for 0 ≤ x < b (12)

With En > 0 we have two case, En < V0 and En > V0.
Case - 1 (0 < En < V0)

For this case, k
(I)
n =

√
2mEn/ℏ = kn. In second region k

(II)
n =

√
2m [En − V0]/ℏ = iκn
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with κn =
√

2m [V0 − En]/ℏ. for second region it is better to write solution in terms of
exponential function. We also shift1 the functions to better accommodate the boundary
conditions. Combining all this we have the wavefunction

ϕ(I)
n (x) = A sin k(x+ a) +B cos k(x+ a), for − a ≤ x < 0

ϕ(II)
n (x) = Ce−κ(x−b) +Deκ(x−b), for 0 ≤ x < b

Demanding the boundary condition ϕ
(I)
n (x) = 0 at x = −a we have B = 0. Similarly for

ϕ
(II)
n (x) = 0 at x = b we have C = −D.

ϕ(I)
n (x) = A sin k(x+ a), for − a ≤ x < 0 (13)

ϕ(II)
n (x) = D(eκ(x−b) − eκ(x−b)) = D sinh (κ(x− b)), for 0 ≤ x < b (14)

Finally the boundary condition at x = 0 are ϕ
(I)
n (x) = ϕ

(II)
n (x) and ∂ϕ

(I)
n (x)/∂x =

∂ϕ
(II)
n (x)/∂x which give

A sin (ka) = D sinh (−κb)

Ak cos (ka) = Dκ cosh (−κb)

From the above equation we have

1

k
tan (ka) =

1

κ
tanh (−κb)

⇒κ

k
=

tanh (−κb)

tan (ka)

⇒
√

V0 − E

E
=

tanh (−κb)

tan (ka)
(15)

We can solve the transcendental equation (15) graphically as shown in figure 2 to find the
eigenvalues and using that we could find the eigenstates.

0.5 1.0 1.5 2.0 2.5 3.0
E

-4

-2

2

4

f(E)

V0-E

E

tan (-κb)

tanh (kb)

Figure 2: graphical solution to equation (15)

Case - 2 (En > V0)

For this case, k
(I)
n =

√
2mEn/ℏ = kn. In second region k

(II)
n =

√
2m [En − V0]/ℏ =

1Note that when e.g. sin(kx) was a solution of the TISE, also sin(kx+ c) with constant c is one.
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k′
n. Here also we shift the functions to better accommodate the boundary conditions.

Combining all this we have the wavefunction

ϕ(I)
n (x) = A sin k(x+ a) +B cos k(x+ a), for − a ≤ x < 0

ϕ(II)
n (x) = C sin k′(x− b) +D cos k′(x− b), for 0 ≤ x < b

Putting the boundary conditions for the ϕ
(I)
n (x) = 0 at x = −a we have B = 0. Similarly

for ϕ
(II)
n (x) = 0 at x = b we have D = 0.

ϕ(I)
n (x) = A sin k(x+ a), for − a ≤ x < 0 (16)

ϕ(II)
n (x) = D sin k′(x− b), for 0 ≤ x < b (17)

Boundary condition at x = 0 i.e., ϕ
(I)
n (x) = ϕ

(II)
n (x) and ∂ϕ

(I)
n (x)/∂x = ∂ϕ

(II)
n (x)/∂x gives

A sin (ka) = C sin (−k′b)

Ak cos (ka = Ck′ cos (−κb)

From the above equation we have

1

k
tan (ka) =

1

k′ tan (−k′b)

⇒k′

k
=

tan (−k′b)

tan (ka)

⇒
√

E − V0

E
= −tan (k′b)

tan (ka)
(18)

Similarly to Eq. (15), we can solve the transcendental equation (18) graphically to find
the eigenvalues as shown below and using those we could then find the eigenstates.
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E

-2

-1
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2
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f(E)

E-V0
E

-
tan (k' b)

tanh (kb)

Figure 3: graphical solution to equation (18)

(4b) The code Assignment3 program draft v1.nb is set up to discretise the TISE
Eqn. (1.62) as discussed in example 10 of the lecture, and then find the eigenfunctions ϕ̄n

and eigenvalues Ēn > 0 numerically directly. All you have to do is add the potential step
at INSERT STEP HERE and add a missing piece in the derivative at MISSING PIECE.
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Then use the tools at the bottom of the script to compare its results with your analytical
calculation from (4a). Sometimes you might discover your solution to be ϕn = −ϕ̄n (where
ϕ̄n is the numerically found eigenfuction and ϕn is the analytical solution found in 4(a)).
Discuss why this implies that your solution was correct. Discuss why wavefunctions take
the form they do, with as much detail as possible. [6 pts]

Solution: Look at the mathematica file Assignment3 program solution v3.nb for the
numerical part of the solution. For the second part, eigenstates up to a phase factor rep-
resent the same state so ϕn and −ϕ̄n both represent same state, and you cannot control
which of these is randomly chosen by the eigenvector finder in mathematica.

(4c) Suppose a wavefunction at time t = 0 is given by Ψ(x, t = 0) =

e−(x− b
2
)2/(2σ2)/(πσ2)1/4, with 0 < σ = b/5 for 0 < x < b and Ψ = 0 outside this range. Us-

ing the numerical solution from (4b), extend the script to allow the calculation of Ψ(x, t).
For this change the earlier parameters to Lmin = −16, Lmax = 16, a = 10, b = 13, V0 = 5.
Discuss the time evolution of the probability density that you find, and why it makes sense.
In particular compare it with that in the absence of a potential V (x). [6 pts]

Solution: Look at the mathematica file Assignment3 program solution v3.nb for the
numerical part of the solution. We find that the Gaussian wavepacket that we have ini-
tialised on the step part of the potential (region II) initially just spreads, just as we would
expect for a free particle (week 5). In this initial phase, the evolution is exactly the same
for the case with and without potential. It becomes more interesting, once the outer edge
of the wavepacket hits either x = 0 (sudden drop of the potential by ∆V = V0), or x = b
(outer wall with V → ∞. This time, e.g. t = 6 is shown in Fig. 4. it elastically reflects of
the infinite barrier at the right edge (x = b = 13), and also undergoes quantum reflection
from the drop at x = 0 (see below Eq. (2.38). With some probability the particle can
overcome the reflection and enter the deeper part of the well, between x = −a = −10
and x = 0. It quickly reaches the left edge and reflects back, leading to the pronounced
interference features between left and right travelling waves. Bonus questions: How can
you estimate the wavelength of this feature?
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Figure 4: Gaussian wavepacket spreading inside of a potential with step, t = 6 after
initialisation in the Ψ(x, t = 0) given in (4c) (we are using ℏ = m = 1). (right) Without
potentials, it spreads exactly as it would for a free particle (week 5). (left) Within poten-
tial, reflection and quantum reflection at x = b and x = a are seen, as discussed in the
text.
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