
PHY 303, I-Semester 2021/22, Assignment 2

Instructor: Sebastian Wüster
Due-date: 28. Aug 2021

(1) Functions spaces and operators:

(a) Show that the function space L2 over the field of complex numbers as defined in
1.5.4. is a vectorspace, following all items in the definition in section 1.5.3. Comment
carefully on all, and in particular on whether results of operations are in L2 again.
[1pt]
Solution: Let f(x), g(x), h(x) belong to L2 the set of all square integrable function

such that they follow: ∫
dx|f(x)|2 <∞

For L2 to be a vector space:
1) Associative property: u+ (v + w) = (u+ v) + w. Clearly we have

[f(x) + h(x)] + g(x) = f(x) + [h(x) + g(x)]

Also, if
∫
dx |f(x)|2 = C <∞ and

∫
dx |g(x)|2 = D <∞, then also∫

dx|f(x) + g(x)|2
triangle inequality

≤
∫
dx(|f(x)|2 + |g(x)|2)

=

∫
dx |f(x)|2 +

∫
dx |g(x)|2 = C +D <∞,

so the result of any “+” operations between functions in L2 is again in L2.
2) Commutativity: u+ v = u+ v

f(x) + g(x) = g(x) + f(x)

3) Identity element: We require a

f(x) + h(x) = f(x).

That works out if we chose h(x) ≡ 0, i.e. a constant function that is always zero.
4) Inverse element: There needs to be an element g(x) such that

f(x) + g(x) = 0

if we choose g(x) = −f(x).
5) Distributivity of scalar multiplication
Let a, b be scalars, then clearly

a[f(x) + g(x)] = af(x) + ag(x)
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and

(a+ b)f(x) = af(x) + bf(x).

We can also again check that
∫
dx |af(x)|2 = |a|2C <∞, so also scalar multiplication

results in an element that remains in L2.
6) Multiplicative identity: The multiplicative identity in the field is just the number
“1”. Clearly

1× f(x) = f(x).

7) Scalar multiplication with field multiplication
Let a,b be scalars, then

a(bf(x)) = (ab)f(x)

Thus, L2 is a vectorspace.

(b) Show that ⟨(Ô − ⟨Ô⟩)2⟩ = ⟨Ô2⟩ − ⟨Ô⟩2. [1pt]
Solution:

⟨(Ô − ⟨Ô⟩)2⟩ = ⟨(Ô2) + ⟨Ô⟩2 − 2Ô⟨Ô⟩⟩
= ⟨Ô2⟩+ ⟨Ô⟩2 − 2⟨Ô⟩⟨Ô⟩
= ⟨Ô2⟩ − ⟨Ô⟩2

(c) Show that the momentum operator is Hermitian, using Eq. (1.24). [2pts]
Solution: The operator Â is hermitian if:∫ ∞

−∞
(ÂΨ)∗Ψdx =

∫
Ψ∗ÂΨdx

For p̂ to be hermitian : ∫ ∞

−∞
(p̂Ψ)∗Ψdx =

∫ ∞

−∞
Ψ∗p̂Ψdx

where, p̂ = −iℏ ∂
∂x∫ ∞

−∞
(p̂Ψ)∗Ψdx =

∫ ∞

−∞
(−iℏdΨ

dx
)∗Ψdx

= iℏ
∫ ∞

−∞
(
dΨ

dx
)∗Ψdx

Using Integrating by parts

= iℏ

(
[ΨΨ∗]∞−∞ −

∫ ∞

−∞
Ψ∗dΨ

dx
dx

)
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As x→ ±∞, ψ(x) → 0, hence

= −
∫ ∞

−∞
Ψ∗

(
iℏ
dΨ

dx

)
dx

=

∫ ∞

−∞
Ψ∗p̂Ψdx

So, p̂ is Hermitian.

(d) Show that, if you have an orthonormal basis of a function vector space, using Eq.
(1.18), you can find the coefficients as fn = (bn, f), using the scalar product in (1.17).
[1pt]
Solution:

f(x) =
∞∑
n=0

fkbk(x) (1)

(g, f) =

∫ ∞

−∞
dx g∗(x)f(x) (2)

Using Eq.1 and Eq.2

(bn, f) =

∫ ∞

−∞
dxb∗n(x)f(x) =

∫ ∞

−∞
dxb∗n(x)

∞∑
k=0

fkbk(x) =
∞∑
k=0

fk

∫ ∞

−∞
dxb∗n(x)bk(x)︸ ︷︷ ︸

=δnk

= fn

(3)

(e) Consider the step-wise function f(x) = h = const for −S
4
≤ x ≤ S

4
, f(x) = 0 for other

points in the interval −S ≤ x ≤ S and then infinitely repeated outside this interval,
as drawn in Fig. 1. What is the period of this function?.

Figure 1: Stepwise function f(x) (orange) as defined in the text.

You can show that bn = cos
(
2πn
L
x
)
form a basis for the vector-space of all symmetric

functions with period L. Normalise this basis on its interval of periodicity, then use
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this and your result of part (1d) above to explicitly find the coefficients bn in the basis
expansion of the function f(x), i.e. writing

f(x) =
∞∑
n=0

fn cos

(
2πn

L
x

)
. (4)

[5pts] Hint, for periodic functions, we use a scalar product in which we integrate over
one period only. You may check results of integrations with a computer, but I expect
you to also learn the manual method as well. You can also check your coefficients
using the script provided in assignment 1.

Solution: The function in Fig. 1 defined in the question has a period 2S, since f(x+
2S) = f(x) for all x. First, let us normalize the basis b̄n(x) = cos

(
πn
S
x
)
across this

period;

For n = 0, the normalisation integral for the first cosine is
∫ S

−S
dx cos (0) = 2S, hence

we write a normalized basis function b̄0(x) =
1√
2S
. For higher n we need to integrate

e.g. ∫ S

−S

dx |bn(x)|2 =
∫ S

−S

dx cos(πnx/S)︸ ︷︷ ︸
≡g(x)

cos(πnx/S)︸ ︷︷ ︸
≡h′(x)

I.b.P.
= cos(πnx/S)

(
S

πn

)
sin(πnx/S)︸ ︷︷ ︸

g(x)h(x)

∣∣∣∣S
−S

︸ ︷︷ ︸
=0

−
∫ S

−S

dx [− sin2(πnx/S)]︸ ︷︷ ︸
g′(x)h(x)

.

︸ ︷︷ ︸
=−[1−cos2]

⇔ 2

∫ S

−S

dx cos2(πnx/S) =

∫ S

−S

dx 1 ⇔
∫ S

−S

dx cos2(πnx/S) = S.

thus all the n > 0 basis functions are normalized as b̄n(x) =
√

1
S
cos(πnx/S).

To finally expand the function f(x), we project (b̄n, f(x)) as in the equation (1), hence
f(x) =

∑∞
n=0 fnb̄n(x), with fn = (b̄n, f), see Eq. (2). Thus

fn =

∫ S

−S

dx

√
1

S
cos(πnx/S)f(x) =

∫ S/4

−S/4

dx

√
1

S
cos(πnx/S)× 1︸︷︷︸

=f

=

√
1

S

(
S

πn

)
sin(πnx/S)

∣∣∣∣S/4
−S/4

= 2
√
S
sin(nπ/4)

(nπ)
. (5)

For n = 0 we separately find f0 =
∫ S/4

−S/4
dx 1/

√
2S =

√
S/8. With these exact

coefficients, we can now plot the requested cumulative terms Fk, one by one e.g. the
graph below.
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(2) Time-dependence of a quantum harmonic oscillator:

(a) Write down the TDSE for a particle of mass m in a harmonic potential, such that the
particle would classically oscillate with frequency ω [1 pt]

(b) Show that

Ψ(x, t) =
1

(σ2π)1/4
e−iωt

2 e−
[x−x0 cos (ωt)]2

2σ2 e
−i(x0

σ
sin (ωt))

(
x−x0 cos (ωt)/

√
2

σ

)
(6)

solves that TDSE. [5 pts]

(c) Find the expectation value of the position, expectation value of the momentum, and
discuss their time evolution in terms of Ehrenfest’s theorem [2 pts].

(d) Finally find the probability density for this particle as a function of time, and discuss
its physical meaning [2 pts].

Solution: 2(a) - For the harmonic potential V = 1
2
mω2x2. Thus the Hamiltonian Ĥ =

T̂ + V̂ = − ℏ2
2m

d2

dx2 +
1
2
mω2x2. Thus, the TDSE is given as

iℏ
∂ψ

∂t
= Ĥψ = − ℏ2

2m

d2

dx2
+

1

2
mω2x2

2(b) - Plugging the given ansatz of ψ into the equation above, it can be proven that it
solves the TDSE. First calculate the LHS, either by Mathematica or by hand

Ψ(x, t) =
1

(σ2π)1/4
e−iωt

2 e−
[x−x0 cos (ωt)]2

2σ2 e
−i(x0

σ
sin (ωt))

(
x−x0 cos (ωt)/

√
2

σ

)
(7)

iℏ
∂ψ

∂t
=

1

(πσ2)1/4
exp

(
−(x− x0 cos(tω))

2

2σ2
−
ix0 sin(tω)

(
x− 1

2
x0 cos(tω)

)
σ2

− itω

2

)

× iℏ

(
−
ix0ω cos(tω)

(
x− 1

2
x0 cos(tω)

)
σ2

− x0ω sin(tω)(x− x0 cos(tω))

σ2

− ix20ω sin2(tω)

2σ2
− iω

2

) (8)
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Simplifying further

iℏ
∂ψ

∂t
=

iℏ
(πσ2)1/4

exp

(
−(x− x0 cos(tω))

2

2σ2
−
ix0 sin(tω)

(
x− 1

2
x0 cos(tω)

)
σ2

− itω

2

)
(
ω(sin(tω) + i cos(tω)) (−i (σ2 + x20) sin(tω) + (x20 − σ2) cos(tω)− 2xx0)

2σ2

) (9)

While the RHS of TDSE is calculated as

Ĥψ =

mx2ω2 exp

(
− (x−x0 cos(tω))2

2σ2 − ix0 sin(tω)(x− 1
2
x0 cos(tω))

σ2 − itω
2

)
2(πσ2)1/4

− ℏ2

2 4
√
πm

4
√
σ2

[
−

exp

(
− (x−x0 cos(tω))2

2σ2 − ix0 sin(tω)(x− 1
2
x0 cos(tω))

σ2 − itω
2

)
σ2

+

(
−x− x0 cos(tω)

σ2
− ix0 sin(tω)

σ2

)2

×

exp

(
−(x− x0 cos(tω))

2

2σ2
−
ix0 sin(tω)

(
x− 1

2
x0 cos(tω)

)
σ2

− itω

2

)]
(10)

upon simplifying further

Ĥψ =
1

(πσ2)1/4
exp

(
−(x− x0 cos(tω))

2

2σ2
−
ix0 sin(tω)

(
x− 1

2
x0 cos(tω)

)
σ2

− itω

2

)
(
mx2ω2

2
− ℏ2

2m

[
− 1

σ2
+

(
−x− x0 cos(tω)

σ2
− ix0 sin(tω)

σ2

)2
]) (11)

To verify that the eqn (9) and eqn (11) are equal you could use the mathematicalcom-
mand Fullsimplify[LHS-RHS]) and see that it gives zero. Thus, eqn (7) is the solution
of the TDSE in 2(a).
2(c) The expectation value of position ⟨x̂⟩and momentum ⟨p̂⟩ are calulcated as.

⟨x̂⟩ =
∫ ∞

−∞
ψ†xψdx

⟨x̂⟩ =
∫ ∞

−∞

1

(σ2π)1/2
xe−

[x−x0 cos (ωt)]2

σ2 dx

⟨x̂⟩ = x0cos(ωt)
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⟨p̂⟩ =
∫ ∞

−∞
ψ† − iℏ

∂

∂x
ψdx

⟨p̂⟩ = −iℏ
∫ ∞

−∞
dx

1

(σ2π)1/4
ei

ωt
2 e−

[x−x0 cos (ωt)]2

2σ2 e
i(x0

σ
sin (ωt))

(
x−x0 cos (ωt)/

√
2

σ

)
×(

−x−x0 cos(tω)
σ2 − ix0 sin(tω)

σ2

)
e−

(x−x0 cos(tω))2

2σ2 e−
ix0 sin(tω)(x− 1

2x0 cos(tω))
σ2 e−

itω
2

(πσ2)1/4

⟨p̂⟩ = −iℏ
∫ ∞

−∞
dx

1

(πσ2)1/2

(
−x− x0 cos(tω)

σ2
− ix0 sin(tω)

σ2

)
e

−[x−x0cos(ωt)]2

σ2

⟨p̂⟩ = −iℏ(0− ix0sin(ωt)

σ2
)

⟨p̂⟩ = −ℏx0sin(ωt)
σ2

The time evolution of the expectation value of position is related to the expectation value
of momentum by Ehrenfest theorem as d⟨x̂⟩

dt
= ⟨p⟩

m
, see Eq. (1.44) of the lecture

d⟨x̂⟩
dt

= −x0ωsin(ωt)

⟨p⟩
m

=
ℏ

mσ2
x0sin(ωt)

Where σ =

√
ℏ
mω

Similary the time evolution of the expectation of the momenta is given by d⟨p̂⟩
dt

= −⟨dV
dx
⟩

d⟨p̂⟩
dt

=
−ℏx0ωcos(ωt)

σ2

d⟨p̂⟩
dt

= −mω2⟨x̂⟩

−⟨dV
dx

⟩ = −mω2x

Observe that the Ehrenfest theorem is clearly valid for the evolution in terms of the expecta-
tion values of the position and momenta. However, it does not account for the fluctuations
in the Wave-fucntion.
2(d) - The probability density of the particle is calculated as

|ψ2(t, x)| = ψ†(t, x)ψ(t, x)

|ψ2(t, x)| = 1

(πσ2)1/2
e

−[x−x0cos(ωt)]2

σ2

The proability density is a Gassian around the centre x0cos(ωt). Thus the Gaussian and
in turn the particle will keep on oscillating with it’s centre between x0and− x0.

(3) Heisenberg’s uncertainty principle: [10pts] Show that the wavefunction Eq. (6)
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of question 2 satisfies Heisenbergs uncertainty principle at all times. How do uncertainties
change with time?
Solution: The position and momenta uncertainities are calculated as

σx =
√
⟨x̂2⟩ − ⟨x̂⟩2

⟨x̂2⟩ =
∫ ∞

−∞
ψ†x2ψdx

⟨x̂2⟩ = σ2 + 2x20cos(ωt)
2

2
⟨x̂⟩2 = x20cos(ωt)

2

∴ σx =

√
σ2

2

σp =
√

⟨p̂2⟩ − ⟨p̂⟩2

⟨p̂2⟩ =
∫ ∞

−∞
ψ†(−ℏ2)

d2

dx2
ψ dx

⟨p̂2⟩ = (ℏ2)
σ(σ2 + 2x20 sin(tω)

2)

2
√

1
σ2σ6

⟨p̂2⟩ = ℏ2(σ2 + 2x20 sin(tω)
2)

2σ4

⟨p̂⟩2 = ℏ2x20 sin(tω)2

σ4

σp =

√
ℏ2(σ2 + 2x20 sin(tω)

2)

2σ4
− ℏ2x20 sin(tω)2

σ4

σp =

√
ℏ2
2σ2

∴ σxσp =
ℏ
2

Thus Heisenberg’s uncertainty principle (Eq. (1.47) of the lecture) is satisfied. Observe
that the uncertainties are independent of time.
(4) Particle bouncing in an infinite square well: Consider a particle of mass m in
the infinite square well potential discussed in section 2.2.1. of the lecture. At time t = 0,
let its wavefunction be

Ψ(x, t = 0) =

√
1

a
(sin (πx/a)− sin (2πx/a)) . (12)

(4a) Find the wavefunction at any later time t > 0. [2 pts]
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Solution: From Eq.(2.17) and Eq.(2.18) of the lecture, we have the Energy eigenvalues
and eigenstate.

En =
n2π2ℏ2

2ma2
, for n = 1, 2, 3, . . . (13)

ϕn(x) =

√
2

a
sin
(nπx

a

)
. (14)

using the eigenstates, the wavefunction can be written as Ψ(x, t = 0) = 1/
√
2(ϕ1(x)−

ϕ2(x))
Now, using Eq. (1.71) of the lecture, the wavefunction at a later time t will be

Ψ(x, t) =
1√
2

(
e−i

E1t
ℏ ϕ1(x)− e−i

E2t
ℏ ϕ2(x)

)
.

Ψ(x, t) =
1√
2
e−i

E1t
ℏ

(
ϕ1(x)− e−i

(E2−E1)t
ℏ ϕ2(x)

)
(15)

(4b) From that calculate the probabilities that the particles is in the left side of the well
(at 0 < x < a/2) or the right side (a/2 < x < a) [3 pts]

Solution: The probability density is given by

|Ψ(x, t)|2 = 1

2

(
|ϕ1(x)|2 + |ϕ2(x)|2 − e−i

(E2−E1)t
ℏ ϕ1(x)ϕ2(x)− ei

(E2−E1)t
ℏ ϕ1(x)ϕ2(x)

)
=

1

2

(
|ϕ1(x)|2 + |ϕ2(x)|2 − 2 cos

(
(E2 − E1)t

ℏ

)
ϕ1(x)ϕ2(x)

)
. (16)

Now the probability of being on the left side of the well (at 0 < x < a/2) is given by,

PL(t) =

∫ a/2

0

dx |Ψ(x, t)|2

=
1

2

(∫ a/2

0

dx |ϕ1(x)|2 +
∫ a/2

0

dx |ϕ2(x)|2 −
∫ a/2

0

dx 2 cos

(
(E2 − E1)t

ℏ

)
ϕ1(x)ϕ2(x)

)
.

here the term
∫ a/2

0
dx |ϕ1(x)|2 is the probability to find the particle in the left half if the

particle is in the first eigenstate and it is equal to 1/2 and same for all eigenstates. also∫ a/2

0
dx ϕ1(x)ϕ2(x) = 4/3π So we get

PL(t) =
1

2

(
1− 8

3π
cos

(
(E2 − E1)t

ℏ

))
. (17)

Now the probability of finding the particle in the right half is

PR(t) = 1− PL(t) =
1

2

(
1 +

8

3π
cos

(
(E2 − E1)t

ℏ

))
. (18)
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(4c) Calculate the probability current at x = a/2 as a function of time, and relate your
finding with the answer to (4b). [3 pts]

Solution: The form of probability current is given in Eq. (1.53) lecture notes.

J(x, t) =
ℏ
m
Im

[
Ψ∗∂Ψ

∂x

]
(19)

∂Ψ

∂x
=
∂

∂x

[√
1

a

(
sin (πx/a)− e−i

(E2−E1)t
ℏ sin (2πx/a)

)]
.

=

√
1

a

π

a

(
cos (πx/a)− 2e−i

(E2−E1)t
ℏ cos (2πx/a)

)
(20)

using this

Ψ∗∂Ψ

∂x
=

π

a2

(
cos (πx/a)− 2e−i

(E2−E1)t
ℏ cos (2πx/a)

)(
sin (πx/a)− ei

(E2−E1)t
ℏ sin (2πx/a)

)
=

π

a2
(cos (πx/a) sin (πx/a) + 2 cos (2πx/a) sin (2πx/a)

−2e−i
(E2−E1)t

ℏ cos (2πx/a) sin (πx/a)− ei
(E2−E1)t

ℏ cos (πx/a) sin (2πx/a)
)

(21)

Taking the imaginary part of equation (21) and putting it in equation (19) we have

J(x, t) =
ℏπ
ma2

(
2 sin

(E2 − E1)t

ℏ
cos (2πx/a) sin (πx/a)− sin

(E2 − E1)t

ℏ
cos (πx/a) sin (2πx/a)

)
(22)

The probability current at x = a/2 is given by

J(a/2, t) =
ℏπ
ma2

(
−2 sin

(E2 − E1)t

ℏ

)
(23)

Now the current is also the rate of change of probability so we must have

J(t) =
dPL(t)

dt
=

4

3π
sin

(
(E2 − E1)t

ℏ

)
E2 − E1

ℏ

=
4

3π
sin

(
(E2 − E1)t

ℏ

)
3π2ℏ2

2ma2ℏ
(24)

=
ℏπ
ma2

(
−2 sin

(E2 − E1)t

ℏ

)
(25)

(4d) What is the probability to measure the particle to have energy E = π2ℏ2/(2ma2) at
t = 0? What about later times t > 0? [1 pt]

Solution : The wave function at time t = 0 is given by

Ψ(x, t = 0) = 1/
√
2(ϕ1(x)− ϕ2(x)) (26)
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from this, the probability to measure E = π2ℏ2/(2ma2) is square of the coefficient of ϕ1(x)
i.e., 1/2. Later, the wave function at time t is given by

Ψ(x, t = 0) =
1√
2

(
e−i

E1t
ℏ ϕ1(x)− e−i

E2t
ℏ ϕ2(x)

)
(27)

Since the coefficient is modified by a phase only, the probability of measuring
E = π2ℏ2/(2ma2) is still the same, i.e., 1/2.

(4f) Suppose we have measured the energy to be E = π2ℏ2/(2ma2) at time tm =
(2ma2)/(πℏ) and subsequently measure it again at t = 2tm. What is the probability to
find the same value E again? [1 pt]

Solution : When we measure the energy to be E = π2ℏ2/(2ma2) at time tm = (2ma2)/(πℏ)
our states collapse to the eigenstate ϕ1(x). i.e., at time tm

Ψ(x, tm) = ϕ1(x) (28)

when it evolved from here, the state at the time t will be

Ψ(x, t) = e−i
E1(t−tm)

ℏ ϕ1(x) (29)

The state at t = 2tm is

Ψ(x, t) =e−i π2ℏ
2ma2

2ma2

πℏ ϕ1(x)

=e−iπϕ1(x) (30)

the probability of finding the same value E again is one as the state is the same up to a
phase factor.
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