PHY 303, I-Semester 2021/22, Assignment 2

Instructor: Sebastian Wiister
Due-date: 28. Aug 2021

(1) Functions spaces and operators:

(a) Show that the function space Ly over the field of complex numbers as defined in
1.5.4. is a vectorspace, following all items in the definition in section 1.5.3. Comment
carefully on all, and in particular on whether results of operations are in Ly again.

[1pt]
Solution: Let f(x),g(x), h(x) belong to Ly the set of all square integrable function

such that they follow:

[ dals@) < o

For 1Ly to be a vector space:
1) Associative property: u+ (v +w) = (u+ v) +w. Clearly we have

[f(z) + h(z)] + g(x) = f(2) + [A(z) + g(z)]
Also, if [dx|f(x)]* =C < o0 and [dz |g(x)|* = D < oo, then also

triangle inequality ) )
< [ aa(@P +lg@P)

/ﬁﬂﬂm+guw

:/dx|f(x)|2+/d:p lg(z)]* =C + D < o0,

so the result of any “+7 operations between functions in Lo is again in L.
2) Commutativity: uw+v =u+v

f(@) +9(x) = g(2) + f(z)

3) Identity element: We require a
f(@) +h(z) = f(2).

That works out if we chose h(x) =0, i.e. a constant function that is always zero.
4) Inverse element: There needs to be an element g(x) such that

flz)+g(x) =0

if we choose g(x) = — f(x).
5) Distributivity of scalar multiplication
Let a, b be scalars, then clearly

alf(z) + g(x)] = af (z) + ag(x)



and

(a+0)f(x) = af(z) +bf(2).

We can also again check that [ dz|af(x)|* = |a]*C < oo, so also scalar multiplication
results in an element that remains in Lo.

6) Multiplicative identity: The multiplicative identity in the field is just the number
“17. Clearly

Ix f(z) = f(x).

7) Scalar multiplication with field multiplication
Let a,b be scalars, then

a(bf(x)) = (ab) f(x)

Thus, 1Ly 1s a vectorspace.

(b) Show that (O — (O))?) = (O?) — (O)2. [1pt]

Solution:
(O =(0))) = ((0*) + (0)* = 20(0)
= (0%) + (0)* — 2(0)(0)
- (0%) - (0"

(c) Show that the momentum operator is Hermitian, using Eq. (1.24). [2pts]
Solution: The operator A is hermitian if:

/ (AD)* Wdz = / U* AWda

[e.9]

For p to be hermitian :

/ (ﬁ@)*\lldx:/ U pWdx

, L
here, p= —ili—
where, p iho

WU Udr = —th—\)*"Ud
/m@> . /m<zdg 2

< dU

=ih —\*"¥d

' /oo(dm> *

Using Integrating by parts

© dv
:m<[w*]i°oo—/ \If*%d:c>



As x — +o0,9(x) — 0, hence

o dv
=— U ih— |d
/Oo (2 dx > o

= / U pWdx

o0

So, p is Hermitian.

(d) Show that, if you have an orthonormal basis of a function vector space, using Eq.
(1.18), you can find the coefficients as f,, = (b, f), using the scalar product in (1.17).

[1pt]
Solution:

) =Y fubi(2) (1)

(9, 1) = / " da g (@) f(2) 2)

o0

Using Fq.1 and Eq.2

b §)= [ dati)f@) = [ detio kabk ka | i@t = 1,

—00
(.

g

—6nk

(3)

(e) Consider the step-wise function f(z) = h = const for =2 <z < £, f(z) = 0 for other
points in the interval —S < x < § and then infinitely repeated outside this interval,
as drawn in Fig. 1. What is the period of this function?.

oy

Figure 1: Stepwise function f(z) (orange) as defined in the text.

You can show that b, = cos (2“” ) form a basis for the vector-space of all symmetric
functions with period L. Normalise this basis on its interval of periodicity, then use

3



this and your result of part (1d) above to explicitly find the coefficients b,, in the basis
expansion of the function f(x), i.e. writing

Z Focos (2”” ) (4)

[5pts| Hint, for periodic functions, we use a scalar product in which we integrate over
one period only. You may check results of integrations with a computer, but I expect
you to also learn the manual method as well. You can also check your coefficients
using the script provided in assignment 1.

Solution: The function in Fig. 1 defined in the question has a period 25, since f(x +
25) = f(x) for all z. First, let us normalize the basis b, (x) = cos (Zx) across this
pertod;

Forn =0, the normalisation integral for the first cosine is f_SS dx cos (0) = 25, hence
we write a normalized basis function by(x) = \/LQTS' For higher n we need to integrate
e.q.

/ S ()2 = / S cos(mna/S) cos(mnz /)

=g(x) =h/(z)
S o8
Lb.P. cos(mnz/S) (—) sin(mnz/S) —/ dz [—sin®(mnz/S)).
™ _s _s . —~ o
~~ 4 g'(x)h(z)
g(@)h(z) ~ ~ -
~ ~~ d =—[1—cos?]

=0

s S s
& 2/ dz cos®(mnx/S) = / dx 1 (:)/ dz cos®(mnx/S) =
s s

-5

thus all the n > 0 basis functions are normalized as by,(z) = \/gcos(ﬂnx/S).

To finally expand the function f(z), we project (bn, f(2)) as in the equation (1), hence
flx) = 32020 fubn (), with fo = (bn, f), see Eq. (2). Thus

5/4
/ dx \/jcos mnx/S)f dx \/icos mnx/S) X L
5/4

ENEYEAR T pygiinten/d)
= S( )1n(7mx/5) =2VS . (5)

™m 54 (nm)

For n = 0 we separately find fo = fsg/z dx 1/v/2S = /S/8. With these exact

coefficients, we can now plot the requested cumulative terms Fy, one by one e.g. the
graph below.
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(2) Time-dependence of a quantum harmonic oscillator:

(a) Write down the TDSE for a particle of mass m in a harmonic potential, such that the
particle would classically oscillate with frequency w [1 pt]

(b) Show that

1 et _lz=wgeos@b]® (70 g ) (EmR0c08 (wh)/vV2
Vot = e e (5 sin ) (i) (6)

solves that TDSE. [5 pts]

(c¢) Find the expectation value of the position, expectation value of the momentum, and
discuss their time evolution in terms of Ehrenfest’s theorem [2 pts].

(d) Finally find the probability density for this particle as a function of time, and discuss
its physical meaning [2 pts].

Solution: 2(a) - For the harmonic potential V = %mw2x2. Thus the Hamiltonian H =

T+V= —%% + smw?z?. Thus, the TDSE is given as
o o2 1
h_ _ H - = - 2 2
T 2m dx? * gt

2(b) - Plugging the given ansatz of ¢ into the equation above, it can be proven that it
solves the TDSE. First calculate the LHS, either by Mathematica or by hand

1 et [x—2( cos (wt)]2 —i( 20 gin (wt x—xq cos (wt)/V2
Wat) = e H e TR () (PR @
0 1 (z — 2 cos(tw))?  ixosin(tw) (z — szocos(tw))  itw
ih— = ————exp | — - - =
ot (wo?)t/4 P 202 o2 2

- 5 (8)

5 m( _imow cos(tw) (v — gaocos(tw))  wowsin(tw)( — wp cos(tw))
o? o

irdwsin®(tw)  iw
202 2



Simplifying further

L0y ik (z — mgcos(tw))?  izgsin(tw) (z — $zgcos(tw))  itw
ot = oy (‘ oo - _ 7) )
(w(sin(tw) +icos(tw)) (—i (02 + x3) sin(tw) + (22 — 0?) cos(tw) — Zxxo))
202

While the RHS of TDSE is calculated as

_ tw))2 ixo sin(tw) (z— L o cos(tw) ;
ma?w? exp <—(‘” mO;OS( w)” ( 2 ) _itw
o o 2

2(mo?)1/4

A

Hy =

_ (w—wo cos(tw))? o sin(tw) (mf%azo cos(tw)) zt_w)

12 exp< 252 - o2 7
2mmV? | o? (10)

( r — xocos(tw)  ixgsin(tw) ) 2
+ (- - X
o? o?

(z — 20 cos(tw))?  izgsin(tw) (z — sxo cos(tw))  itw
P 202 o? 2

upon simplifying further

Hp= —
v 202 o2 2

(ro?
mziw? B2 1 Ltz cos(tw)  iwgsin(tw) 2
2 2m o? o? o?

To verify that the eqn (9) and eqn (11) are equal you could use the mathematicalcom-
mand Fullsimplify[LHS-RHS]) and see that it gives zero. Thus, eqn (7) is the solution
of the TDSE in 2(a).

2(c) The expectation value of position (T)and momentum (p) are calulcated as.

A 1 (_ (x — Zo cos(tw))2 1o sin(tw) (:E — %1’0 COS(tUJ)) itw)
17 exp

(#) / " Yreyde
= 1
()

_ [z—zqcos (wt)]2

e

zocos(wt)



& 0
@)= [ ot =iy v

R . o0 1 cwt _[z—zocos(wt)]2 -(TQ - t I*IOCOS(Wt)/\/i
(p)y = —Zh/ dxmeZ 26 202 el( o sin(w ))< 7 >><
—00
<_Ifzoo(-2;)s(tw) __img S;l;(tw)) o (Z—IQZC:;(tw))Q - izq Sin(tw)(zd;%zo cos(tw)) e_itTw
(ro2)L/4
) " /°° J 1 x —xgcos(tw) ixpsin(tw)) zle—zgeoswt)?
= — T - — e o2
P o (o)1 o2 o2
. . izgsin(wt)
(p) = —ih(0 — ———)
o
hxosin(wt)

p) = -

The time evolution of the expectation value of position is related to the expectation value

o2

of momentum by Ehrenfest theorem as % = %, see Eq. (1.44) of the lecture
% = —zowsin(wt)
% = mi; xosin(wt)
Where 0 = i
mw
Similary the time evolution of the expectation of the momenta is given by % = —<%)

d(p)  —hxzowcos(wt)

dt o2
a6
—;? = —mw(2)
d
—(%) = —mw’z

Observe that the Ehrenfest theorem is clearly valid for the evolution in terms of the expecta-
tion values of the position and momenta. However, it does not account for the fluctuations
in the Wave-fucntion.

2(d) - The probability density of the particle is calculated as

02 (t )] = T (t, 2)e(t, )
1 —lx—zgcos(wt 2
2 (t, @) = We e

The proability density is a Gassian around the centre xocos(wt). Thus the Gaussian and
in turn the particle will keep on oscillating with it’s centre between xgoand — x.

(3) Heisenberg’s uncertainty principle: [10pts] Show that the wavefunction Eq. (6)

7



of question 2 satisfies Heisenbergs uncertainty principle at all times. How do uncertainties
change with time?
Solution: The position and momenta uncertainities are calculated as

02 = /) — (3
@) = [ vl

0? 4 2zkcos(wt)?

2
(2)? = zicos(wt)?
o2
Sy
2

70 =)~ P
#) = [ ) v s

o(o? + 222 sin(tw)?)

(p°) = (7)
24/ 206
(7 = h*(0? + 222 sin(tw)?)
204
o Prdsin(tw)?
o)y =——73—"
h2(02? + 222 sin(tw)?)  h2a?sin(tw)?
o= 204 B o4
72
=\ 202
h
L. O-xo-p - 5

Thus Heisenberg’s uncertainty principle (Eq. (1.47) of the lecture) is satisfied. Observe
that the uncertainties are independent of time.

(4) Particle bouncing in an infinite square well: Consider a particle of mass m in
the infinite square well potential discussed in section 2.2.1. of the lecture. At time ¢t = 0,
let its wavefunction be

U(z,t=0) = \/g (sin (mz/a) — sin (27z/a)) . (12)

(4a) Find the wavefunction at any later time ¢ > 0. [2 pts]

8



Solution: From FEq.(2.17) and Eq.(2.18) of the lecture, we have the Energy eigenvalues
and eigenstate.

n?m?h?
En:W, forn:1,2,3,... (13)

2 nmwx
() = 1/ Zsin (272 14
)= 2o (1) a0
using the eigenstates, the wavefunction can be written as V(x,t = 0) = 1/v/2(¢y1(x) —

$2())
Now, using Eq. (1.71) of the lecture, the wavefunction at a later time t will be

W(a,t) = % (¢ b1(2) — e Fn(a)
¥a.t) = s F (a) = 0u(o) (15)

(4b) From that calculate the probabilities that the particles is in the left side of the well
(at 0 < x < a/2) or the right side (a/2 < x < a) [3 pts]

Solution: The probability density is given by

(BEo—Eq)t i (E2—E)t

WP = 5 (1@ + [9a(0) = 57 b1 (2)6(w) — 57 61 (2)0(0))

=2 (10 + oot —2e0s (B 1ot (16)

Now the probability of being on the left side of the well (at 0 < x < a/2) is given by,

a/2
Pp(t) :/0 dz |V (z,t)]?

:% </Oa/2 i |gb1(ac)|2+/0a/2 0 |6 () —/Oa/2 i 2 cos (wr—fl)t) @(w)@(m)) -

here the term foa/2 dx |1 (x)|? is the probability to find the particle in the left half if the
particle is in the first eigenstate and it is equal to 1/2 and same for all eigenstates. also

foa/2 dz ¢1(x)p2(x) = 4/31 So we get

1 8 (Ey — En)t
Pt)y==(1-—— — ). 1
(1) 5 ( 5, €0 ( - )> (17)
Now the probability of finding the particle in the right half is
1 Ey— F
Palt) = 1— Py(t) = = (14 2 cos (22 BDLYY (18)
2 3T h



(4¢) Calculate the probability current at x = a/2 as a function of time, and relate your
finding with the answer to (4b). [3 pts]

Solution: The form of probability current is given in Eq. (1.53) lecture notes.

T 1) = Lom [xya—‘l’] (19)

m ox

g—ij :% [\/g <sin (rx/a) — e~ gin (27rx/a)>] :

:\/Iﬁ <cos (rx/a) — D (27TZE/CL)> (20)

aa
using this
8\11 . o—FEq)t . o—Eq)t
Vo= 12 <COS (/) — 27 cos (27T$/a)> (Sin (rz/a) — ¢ sin (27ra:/a)>
T a
= 12 (cos (mzx/a)sin (rx/a) + 2 cos (2mx/a) sin (27x/a)
a
_(Ba—Ep)t X j(F2—E1)t .
—2e i cos (2mx/a)sin (rx/a) — e F  cos(mx/a)sin (27m:/a)> (21)

Taking the imaginary part of equation (21) and putting it in equation (19) we have

E,— F E,— FE
J(z,t) :h_7r2 (2 sin (2—h1)t cos (2mz/a) sin (7 /a) — sin (2—h1)t cos (mx/a) sin (27rx/a))
ma
(22)
The probability current at x = a/2 is given by
h . (Ey— Byt
J(a/2,t) = " (—2 sin ———— (23)
Now the current is also the rate of change of probability so we must have
dPp(t) 4 . ((BEy— E)t\ By — By
J(t)= ——=—
) =—g~ ~3;n ( h h
4 . (EQ — El)t 37T2h2
_ = 24
3r o ( h > 2ma?h (24)
h . (Ey— Byt
= W (—2 Sin T (25)

(4d) What is the probability to measure the particle to have energy E = 72h?/(2ma?) at
t =07 What about later timest > 07 [1 pt]
Solution : The wave function at time t = 0 s given by

Uz, t = 0) = 1/V2(¢1(x) — da(x)) (26)

10



from this, the probability to measure E = w*h%/(2ma?) is square of the coefficient of ¢1(x)
i.e., 1/2. Later, the wave function at time t is given by

Wt =0) = = (¢ or(o) = e onta) 27)

Since the coefficient is modified by a phase only, the probability of measuring
E = 7?h%/(2ma?) is still the same, i.e., 1/2.

(4f) Suppose we have measured the energy to be E = w*h%*/(2ma®) at time t,, =

(2ma?)/(7h) and subsequently measure it again at t = 2t,,. What is the probability to
find the same value E again? [1 pt]

Solution : When we measure the energy to be E = w*h*/(2ma?) at time t,, = (2ma®)/(7h)
our states collapse to the eigenstate ¢1(x). i.e., at time t,,

U(z,tm) = ¢1(z) (28)
when it evolved from here, the state at the time t will be

_;E1=tm)
B

U(z,t)=e () (29)

The state at t = 2t,, is

725 2ma?

U(w,t) =e " 2ma? wh” gy (1)
=e""¢1(w) (30)

the probability of finding the same value E again is one as the state is the same up to a
phase factor.

11



