
PHY 303, I-Semester 2022/23, Assignment 1

Instructor: Sebastian Wüster
Due-date: Sun 13th Aug 2023 23:55

(1) Relativistically accelerated electrons: [10pts] Free electrons in a plasma can
be accelerated to relativistic velocities using very strong lasers. Suppose, in a certain
experiment, the probability distribution of one cartesian component of the momentum
after interaction with the laser is given by the function drawn below, where a < b < c are
three values of momentum (all n × mec, with 1.5 < n < 10.8, where me is the electron
mass and c the speed of light1).

Figure 1: Continuous probability distribu-
tion f(px) of a certain cartesian component
px of electron momentum after some rela-
tivistic laser plasma interaction.

(1a) Setup a function for the probability distribution fa,b,c(px) with a < b < c matching
the above drawing, and determine fm such that this distribution is correctly normalised.
Then find the mean, most-likely and median momentum that we would measure. Also
find the standard deviation. For all four quantities and the parameters a, b, c, discuss
their meaning/implication for measurements. Discuss why they take the values that you
found, for this specific distribution. Check the sanity of all your answers by looking at
some distributions where (some of) the answers are obvious beforehand, such as a sym-
metric distribution, or an arbitrarily narrow distribution.

(1b) Now suppose some complicated laser-plasma interaction generates a bi-modal distri-
bution of the form

g(px) = p0fa,b,c(px) + p1fd,e,f (px), (1)

with a < b < c < d < e < f . What relation do p0 and p1 have to fulfill for g to be
properly normalised? Also find the mean momentum and standard deviation again for
the distribution g.

(1c) Consider the special case where |d − c| ≫ |c − a|, |f − d| for p0 = p1. Which
combination of parameters now dominantly sets the standard deviation and why does
that make sense? Will you ever measure a momentum close to the mean momentum?

1You shall find that most of these details do not matter for the question
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(2) Matrix diagonalisation: [10pts] Find the eigenvalues and eigenvectors of the
following matrices. Normalize the eigenvectors. Then explicitly verify the construction
in Eq. (1.16). For the real matrix, how and why can you interpret the diagonalisation
as a basis change in R3? For the real matrix, find the complete eigenspaces, i.e. the
set of all vectors that are an eigenvector if they are not normalised. Please provide a
manual solution, not using a computer. Then verify your solution with mathematica and
document that.
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(3) Wavefunction evolution and collapse: [8pts] On the teams page I pro-
vide a recording of my discussion of example 1, also watch the provided movie
TDSE demo overbarrier.gif, and optionally my lecture notes for PHY106 (week8 ,
page 20). Let us assume a quantum mechanical particle of mass m is described by the
wavefunction Ψ(x, 0) drawn below, and subject to a potential energy V (x) as shown.

Figure 2: Initial wavefunction Ψ(x, t =
0) (blue) of a particle subject to the po-
tential energy V (x) shown in orange. The
potential asymptotically becomes V (x) →
V0 at large |x| and two minima with en-
ergy Vd at x = xL, xR.

(i) Based on this, provide your best guess how the wavefunction Ψ(x, t) evolves at later
times t > 0. Explain or justify your guess. Also discuss how particles treated
in classical mechanics, that start in a comparable initial configuration, would be
expected to evolve. At which time(s) do you expect the quantum and classical
answers to possibly strongly differ, how and why? Hint: To most of these questions,
you cannot yet know the answer rigorously. Trust your intuition and what you learnt
in PHY106 for now, later in the course we shall check if your guess was correct.

(ii) Now suppose, at some time t > 0, we measure the position of the particle near
x ≈ xL up to an accuracy σx as shown in the figure. (Let us assume |Ψ(x, t)|2 > 0
is significant for x ≈ xL at this time). What is the wavefunction of the particle
immediately after that measurement at t = tmeas?

2



(iii) Bonus question:2 Assume further that σx ≪ ℏ2/[8m(Vd + V0)]. What is the
expected future behaviour of that particle at times t ≫ tmeas? (or one dominant
behaviour? Hint: If you learnt about the Fouriertransform/ Momentum distribution
of a Gaussian wavefunction in PHY106 attempt this. Otherwise, revisit it after week
4 in this lecture.)

(4) Computational question, discretised function vector spaces [12 pts]: Con-

sider the set of functions on the interval x ∈ [0, a] given by {fn} = {
√

2
a
sin

(
nπx
a

)
} for

n = 1, 2, 3, · · · . The script Assignment1 draft.nb is set up to represent any function

on a discretisation of that spatial interval into Npts equidistant points: xk = k
(

a
Npts

)
for

k = 0, 1, 2, · · ·Npts − 1 and visualise these.

(4a) Use this to visualise of a few of these functions and discuss how you can relate them
to a Npts component vector. Demonstrate that these vectors are all mutually orthogonal.
For a given Npts, what seems to be the maximum n for which fn can still be reasonably
visualised?

(4b) Pick an arbitrary function g of your taste, that satisfies g(0) = g(a) = 0 (or ≈ 0),
and visualise this in the same way. Then express it in terms of the functions above as
g =

∑kmax
k=0 ckf̄k, and plot this cumulative sum for a couple of choices of kmax. Here f̄k are

the discretised function vectors from part (a), but normalised to one. Discuss what you
see.

(4c) Calculate hn = f ′′′
n first analytically, the third spatial derivative of fn. Then set up

a matrix (operator), which you can multiply with the column vectors from (a) such that
they calculate that third derivative. In the end show through a plot explicitly that your
construction does its job as expected. What does it tell us about the relation between
operators and matrices?

2This means you loose no marks when you don’t do it.
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