
Week 9
PHY 303 Quantum Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2021

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

4.2 Spherically symmetric potentials

The 3D potentials we had discussed in the previous week were all such that the problem is separable,
due to (4.9). In that case the TISE can frequently be solved analytically even if the potential is
not symmetric (such as (4.8) with the !k 6= !` for k 6= `). We shall now look at cases that are not
easily separable, but in which the potential is spherically symmetric:

V (r) = Vr(r), (4.29)

with r =
p
x2 + y2 + z2. We have used the radial coordinate from

Spherical polar coordinates:
left: We express our position vector as
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in terms of a radius r = |r| =p
x2 + y2 + z2, a polar angle (co-latidude) ✓

and an azimuthal angle (longitude) ', as
sketched on the left. We can find the lat-
ter two from the cartesian coordinates via
✓ = arccos (z/r) and ' = atan2(y, x). The
latter is arctan(y/x) for x, y > 0.

We also have to change our set of unit vectors, from the cartesian ones ex = [1, 0, 0]T ,
ey = [0, 1, 0]T , ez = [0, 0, 1]T to spherical polar unit vectors (green in the figure).
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Note that e✓ =
@
@✓er and e' k @

@'er.

For setting up the coordinates above, we can for the moment freely chose what we call the z-axis.
We shall get back to this subtle point at the end of week 10.

97



Example 30, Coulomb potential: The obvious example for a spherically symmetric
potential is the Coulomb potential Vcoul felt by a particle of charge q near another one of
charge Q, where we place the latter at the origin:

Vcoul(r) =
1

4⇡✏0

qQ

r
=

1

4⇡✏0

qQp
x2 + y2 + z2

, (4.32)

where ✏0 is the vacuum permittivity. We have written the potential in spherical polar coor-
dinates and cartesian coordinates, to highlight how much simpler it looks in polar ones, and
how it can not be separated in the form (4.9) using cartesian coordinates.

Due to the simplicity of a spherically symmetric potential in spherical polar coordinates, we want to
rewrite the TISE (4.6) for those cases entirely in those coordinates. The main challenge is to change
the Laplacian, which is a nasty technical operation, the result of which we take from mathematics
courses:

Laplacian in spherical polar coordinates:
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. (4.33)

Inserting this into (4.6), for a particle of mass m, we now want to solve the time-independent

Schrödinger equation for spherically symmetric potentials
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+ V (r)�n(r, ✓,') = En�n(r, ✓,'). (4.34)

In order to get this tidied up a bit, we can be guided by our knowledge of classical mechanics:
We know, for example from the treatment of the Kepler problem, that for a spherically symmetric
potential (central force), angular momentum is conserved. This motivates us to attempt to re-
express parts of (4.34) using the angular momentum operator (4.17). To do that, we first express
it also in spherical polar coordinates. This is easy for the position operator, which just becomes
r̂ = r̂er. For the momentum operator we need the

Three dimensional gradient: in spherical polar coordinates

r = er
@

@r
+ e✓

1

r

@
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+ e'

1

r sin ✓

@

@'
(4.35)

with unit vectors defined in (4.31).

Inserting this for the momentum operator in (4.17) you can convince yourself (exercise/Gri�th)
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that we get the following

Position space representation of the angular momentum operator For the operator
itself, we find

L̂ = �i~
✓
e'

@

@✓
� e✓

1

sin ✓

@

@'

◆
(4.36)

and for the angular momentum square consequently

L̂2 = �~2
✓

1
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@

@✓

✓
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@
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@2

@'2

◆
(4.37)

Note, that to get from (4.36) to (4.37) you need to be careful that derivatives in the left
operator of L̂2 = L · L act on angles within the unit vectors (4.31) of the right one.
Finally using L̂z = ez · L̂, Eq. (4.36) and Eq. (4.31) we have

L̂z = �i~ @

@'
, (4.38)

for the z-component of angular momentum.

Comparing (4.37) with (4.34) we spot, that we can write the latter (somewhat more tidily) as:
"
� ~2
2m
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✓
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@
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L̂2

2mr2
+ V (r)

#

| {z }
=Ĥ

�n(r, ✓,') = En�n(r, ✓,'). (4.39)

• You can easily show that
⇥
Ĥ, L̂

⇤
= 0. According to Eq. (3.50), this means that angular momentum

is conserved, as we know it has to be in a central potential.

• According to section 3.8, in quantum mechanics this implies that we can expect the eigen-
functions of the Hamiltonian to simultaneously be eigenfunctions of the angular momentum
operator, as we indeed will see shortly.

• Conservation of angular momentum is deeply connected to the spherical symmetry, or in
other words rotational invariance of the central force problem. You have learnt (or will learn)
in classical mechanics, that for a continuous rotational symmetry Noether’s theorem enforces
angular momentum to be conserved. Similarly in quantum mechanics, we could show directly
from the the rotational symmetry of the Hamiltonian, that angular momentum must be
conserved (see Gri�th chapter 6 for further reading).

Since only L̂ contains derivatives with respect to angles, we can hope to sort r and angles ✓, '
apart, and again use our separation of variables trick from section 1.6.5. We make the Ansatz

�(r, ✓,') = R(r)Y (✓,'), (4.40)

suppressing the index n. Inserting this into (4.39), we then bring everything with r onto the LHS
of the resultant equation, and everything with ✓ and ' onto the RHS, concluding that both sides
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have to be equal to the same constant C (exercise, see Gri�th), which we call C = `(` + 1) for
reasons that shall become clear later.

After separation of variables, we reached a

Separated Schrödinger equation in a central potential. For 3D wavefunction (4.40), the
radial part R(r) fulfills the radial Schrödinger equation

� ~2
2m

d

dr

✓
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⌘Ve↵(r)

R(r) = ER(r) (4.41)

and the angular part Y (✓,') fulfills the angular Schrödinger equation
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@2
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◆
Y (✓,') = L̂2Y (✓,') = ~2`(`+ 1)Y (✓,'). (4.42)

• We see from the second equality in (4.42) that the angular equation tells us that the angular
part Y (✓,') of the 3D wavefunction is an eigenfunction of the square of angular momentum,
with eigenvalue ~2`(`+ 1).

• The radial equation (4.41) looks like11 a 1D Schrödinger equation with an e↵ective potential
Ve↵(r). Since we can see from (4.42) without having solved anything that ~2`(` + 1) will
be the eigenvalue of the angular momentum squared, we recognize this e↵ective potential as
exactly the same one that you have encountered in the classical mechanics of the central force
problem. We thus interpret that extra part ~2

2m
`(`+1)

r2 as centrifugal potential.

• The splitting into Eq. (4.41) and Eq. (4.42), can always be done in the form above, indepen-
dent of the detailed form of V (r) as long as V (r) depends only on the radius r = |r|. We
thus see that for this important class of problems, eigenfunctions of the square of the angular
momentum operator play a special role. We will thus have to look at these more closely in
the next section.

11The derivative term is slightly o↵ from our 1D TISE, but that can be cured with a simple substitution (see
Gri�th or section 4.6 here later).
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Example 31, Infinite spherical well: A simple extension of our earlier topic in sec-
tion 2.2.1 would be to consider the infinite spherical well in three dimensions.

left: We (badly) tried to sketch this
on the left. The potential is V (r) =
0 within some radius R, where r =
|r| < R, and V (r) = 1 outside.

The discussion so far applies to this potential, so that we can separately deal with the an-
gular part of the wavefunction (exactly as in the following section), and the radial part (see
Gri�th if you are interested).

4.3 Angular momentum eigenfunctions

To find all solutions of the angular equation (4.42) (divided by �~2), we can make use of separation
of variables one final time. We make the Ansatz

Y (✓,') = ⇥(✓)�('), (4.43)

and again (successfully, exercise, Gri�th) separate all dependence on ✓ onto the LHS and all
dependence on ' onto the RHS. The two separated equations that we find are:


sin ✓

d

d✓

✓
sin ✓

d⇥(✓)

d✓

◆�
= (m2 � `(`+ 1) sin2 ✓)⇥(✓), (4.44)

d2

d'2
�(') = �m2�(') (4.45)

This time we have called the separation constant m2. At this point we do not yet know what m
will be, but it has nothing to do with the particle mass. We call it m because everybody does, and
you shall see later that there is no real danger of confusion.

To know more about m: The second equation (4.45) is easy to solve and gives us

�(') = eim'. (4.46)

From our coordinate definition (4.30) we see that the azimuthal angle ' and ' + 2⇡ correspond
to the same point. For a reasonable wavefunction, we this need �(') = �(' + 2⇡), which you
can reform into e2⇡im = 1, giving us m = 0,±1,±2,±3 etc, i.e. m must be an integer. We have
thus again found a quantisation rule, even though at this point we are not sure yet what is being
quantised (but we shall see that shortly).

The first equation (4.44) is evidently somewhat more complicated. We take its direct solution
from the mathematical physics literature for now, and I will show you a tricky way of finding the
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answer in the next section 4.4. It turns out (4.45) is solved by ⇥(✓) = NPm
` (cos ✓), where N is a

normalisation factor and we used the

Associated Legendre function: defined by

Pm
` (x) = (1� x2)|m|/2

✓
d

dx

◆
|m|

P`(x). (4.47)

As seen above, these are in turn obtained via di↵erentiation from P`, the `’th
Legendre polynomial

P`(x) =
1

2``!

✓
d

dx

◆`

(x2 � 1)`, (4.48)

defined for ` � 0.

• As the name suggests, the Legendre polynomial P` is a polynomial of degree `, you can find
a few explicit examples in Gri�th. I will wait with examples until we have the complete
Y (✓,') shortly.

• Since Legendre polynomials P` are of degree `, we see that associated Legendre functions
Pm
` (x) for |m| > ` do not exist (or are zero). We thus only need to consider |m|  `.

• Recall that we are on the way of solving the 3D TISE for a wavefunction Ansatz �(r, ✓,') =
R(r)Y (✓,'). For a normalized wavefunction, we require

1 =

Z
d3r |�(r, ✓,')|2 =

Z
1

0
dr r2|R(r)|2

Z
d⌦

| {z }
⌘
R
⇡

0 d✓ sin(✓)
R 2⇡
0 d'

|Y (✓,')|2, (4.49)

where we have defined the integration
R
d⌦ over the 3D solid angle. From the above expression

it is clear that it is practical to separately normalize
R
1

0 dr r2|R(r)|2 = 1 and
Z ⇡

0
d✓ sin(✓)

Z 2⇡

0
d'|Y (✓,')|2 = 1, (4.50)

which we can use to fix the constant N in ⇥(✓) above.

Fixing the normalisation constant and putting it all together, we have now found the

Eigenfunction of the angular motion in a spherically symmetric potential are given by
the spherical harmonics

Y m
` (✓,') = (�1)m

s
(2`+ 1)

4⇡

(`� |m|)!
(`+ |m|)!e

im'Pm
` (cos ✓). (4.51)

where the angular momentum quantum number ` = 0, 1, 2, 3, · · · is an integer, as is the
magnetic quantum number |m|  `.
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• We had started o↵ by re-expressing parts of the Hamiltonian in (4.34) using the angular
momentum operator, and then we were able to find the angular part of the 3D wavefunction
(i.e. its ✓ and ' dependence) based entirely on the angular momentum operator. The angular
part thus exclusively encodes the angular momentum properties of our particle in 3D. Directly

from the original equation we already know that Y m
` (✓,') is an eigenfunction of L̂2 with

eigenvalue ~2`(`+ 1), thus the magnitude of angular momentum is

|L̂| ⌘ ~
p
`(`+ 1). (4.52)

• From Eq. (4.38) it is also easy to see that we have

L̂zY
m
` (✓,') = (�i~ @

@'
)Y m

` (✓,') = (~m)Y m
` (✓,'), (4.53)

which implies that the spherical harmonics are also eigenfunctions of the z-component of angular
momentum, with eigenvalue ~m.

• Having a fixed value for L̂2 and L̂z is the maximum amount of information we can have
about the angular momentum, as we have seen in section 4.1.2 (please revisit that now):
Since

⇥
L̂n, L̂m

⇤
= i

P
` ✏nm`L̂` (Eq. (4.23)), we can know at most one component of the vector

without uncertainty. However since
⇥
L̂2, L̂n

⇤
= 0, we are allowed to additionally know L̂2.

• With the prefactors given in Eq. (4.51), the spherical harmonics are normalized when inte-
grated over the solid angle of all space, see Eq. (4.50):

Z
d⌦|Y m

` (✓,')|2 =
Z ⇡

0
d✓ sin(✓)

Z 2⇡

0
d'|Y m

` (✓,')|2 = 1. (4.54)

• As all eigenfunctions of a Hermitian operator, they are mutually orthogonal:
Z

d⌦
h
Y m0
`0 (✓,')

i
⇤

Y m
` (✓,') =

Z ⇡

0
d✓ sin(✓)

Z 2⇡

0
d'

h
Y m0
`0 (✓,')

i
⇤

Y m
` (✓,') = �``0�mm0 . (4.55)

Note that here the ⇤ is really crucial, since the spherical harmonics are usually complex (unless
m = 0).

• Like with all eigenfunctions, the Y m
` (✓,') are only specified up to a complex phase (in par-

ticular up to a factor (�1)), by the equations that define them. For that reason there are
unfortunately di↵erent sign conventions used in di↵erent contexts. Whenever practically mak-
ing use of them, one thus have to be careful. We gave the sign convention usually used in
quantum mechanics for physicists. Already chemists might use di↵erent ones. They even
might like real spherical harmonics.

• The application of spherical Harmonics is much wider than in quantum mechanics: They are
a useful tool whenever one has to expand a function f defined on the surface of a sphere via
angles ✓ and ':

f(✓,') =
X

`,m

c`,mY m
` (✓,'). (4.56)

This surface could be the surface of the earth, or the sky as seen from earth or a spherical
object in engineering. Roughly speaking coe�cients c0,0 with ` = 0 then provide the part of
that function that does not vary with angles, while coe�cients c`,m with higher ` and m, the
more rapid the variations of that function with angle.
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We list the first few spherical harmonics in table 2, you can easily find more in other sources.

m = 0 m = ±1 m = ±2
` = 0 Y00 =

1
p
4⇡

` = 1 Y10 =
q

3
4⇡ cos ✓ Y1±1 = ⌥

q
3
8⇡ sin ✓e±i'

` = 2 Y20 =
q

5
16⇡ (3 cos ✓ � 1) Y2±1 = ⌥

q
15
8⇡ sin ✓ cos ✓e±i' Y2±2 = ⌥

q
15
32⇡ sin2 ✓e±2i'

` = 3 Y30 =
q

7
16⇡ (5 cos

3 ✓ � cos ✓) Y3±1 = ⌥
q

21
64⇡ sin ✓(5 cos2 ✓ � 1)e±i' Y3±2 =

q
105
32⇡ sin2 ✓ cos ✓e±2i'

m = ±3

Y3±3 = ⌥
q

35
64⇡ sin3 ✓e±3i'

Table 2: List of the lowest few spherical harmonics Y m
` (✓,') from (4.51).

Example 32, Sketches of spherical harmonics: In addition to table 2 it is useful to
visualize the angular momentum eigenfunctions:

left: The part related to the quan-
tum number m and hence the z-
component of the angular momen-
tum is easy to draw, see left. If
we compare this with our 1D plane
waves eikx from section 2.1, we real-
ize this corresponds to angular mo-
tion with “wavenumber” k' = m.

The polar part dependent on ✓ is more di�cult to draw. Me made a “polar graph” below.
left: You have to select
an angle ✓ from the origin,
then the distance of the line
from the origin is given by
|Pm

` (cos ✓)| and the sign is
additionally indicated. We
can see that for larger `
the function changes more
rapidly along ✓, while m ad-
ditionally decides in which
direction(s) the function is
nonzero.

One example that we can understand based on our understanding of classical mechanics is
Pm=`
` for large `, e.g. ` = 10. This amounts to a large angular momentum, oriented strongly

along the z-axis. Hence motion is mainly (but not quite perfectly) in the x � y plane, see
also next example.
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Example 33, Angular momentum uncertainty cones:
left: The maximum allowed value of
m is m = `. For that case, if we com-
pare the eigenvalue of |L̂| which is
~
p
`(`+ 1), with that of L̂z which is

~`, we see that Lz < |L|, never quite
being equal. This means that for
large ` the state m = ` corresponds
to the angular momentum pointing
almost entirely but not quite along
the z-axis. We know from Eq. (4.23)
that it cannot point with certainty
along the z-axis, since then we would
know Lx = Ly = 0.

Instead the latter must have some residual uncertainty, which is encoded in the angular
momentum lying within the green cone (think of it rotated around the z-axis to form a cone.
Classically we know the motion must be in a plane perpendicular to the angular momentum
(violet lines). Applied to the uncertainty cone, it must then lie in the blue shaded region
(again think 3D, rotated around z)

Most of the above will become clearer when we combine it with the radial wavefunction in the case
of Hydrogen, so if you were confused, wait until section 4.6.2 and then refer to the above again.

4.4 Algebraic treatment of angular momentum

Similarly to the harmonic oscillator in section 2.3, we can find the eigenvalue structure of angu-
lar momentum entirely without reference to position space wavefunctions, based on commutator
algebra and the commutation relation (4.23).

We again start by the definitions of

Ladder operators for angular momentum

L̂± = L̂x ± iL̂y. (4.57)

Using the basic rules for commutators (3.41), you can show as an easy exercise that

⇥
L̂z, L̂±

⇤
= ±~L̂±, (4.58)

⇥
L̂2, L̂±

⇤
= 0. (4.59)

Now the argumentation proceeds very similar to the one for the harmonic oscillator. Let us assume
that f was an eigenfunction of the square of angular momentum L̂2 and L̂z with “some” (unknown)
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eigenvalue for either, hence L̂zf = µf and L̂2f = �f . Then

L̂z(L̂±f) = L̂zL̂±f �L̂±L̂zf + L̂±L̂zf| {z }
=0

=
⇥
L̂z, L̂±

⇤
| {z }

Eq. (4.58)
= ±~L̂±

f + L̂± L̂zf|{z}
=µf

= (µ± ~)L̂±f. (4.60)

We have thus shown, that if the function f has the eigenvalue µ wrt L̂z, then the function L̂±f has
the eigenvalue µ± ~. Similarly

L̂2(L̂±f)
Eq. (4.59)

= L̂± L̂2f|{z}
=�f

= �L̂±f, (4.61)

which means that L̂±f remains an eigenfunction of L̂2 with the same eigenvalue � that f had.

left: In conclusion, similar to ladder operators for
the harmonic oscillator, the ones for angular momen-
tum are climbing up and down “a ladder” of di↵erent
eigenvalues for L̂z, without changing those of L̂2, as
sketched on the left.
As with the oscillator this cannot go on arbitrarily. It
should be intuitive that we require hL̂2

zi  hL̂2i (we
can proof this, but it is a bit tricky). Hence there shall
again be a top and bottom rung of the ladder, such
that L̂+ft = 0 and L̂�fb = 0. We expect the maxi-
mum and minimal value of m~ to be somehow related
to `.

To find out how exactly they are related, let us look at L̂2ft. In preparation, we can show (Grif-
fith/exercise), that

L̂2 = L̂±L̂⌥ + L̂2
z ⌥ ~L̂z. (4.62)

Applying the lower sign of Eq. (4.62) to the top state (top rung of the ladder) gives

L̂2ft = L̂� L̂+ft| {z }
=0

+ L̂2
zft|{z}

=(~¯̀t)2ft

+~ L̂zft|{z}
=~¯̀tft

= ~2 ¯̀t(¯̀t + 1)ft. (4.63)

Similarly, using (4.62) with the upper sign and applying it to the bottom state (bottom rung of the
ladder)

L̂2fb = L̂+ L̂�fb| {z }
=0

+ L̂2
zfb|{z}

=(~¯̀b)2fb

�~ L̂zfb|{z}
=~¯̀bfb

= ~2 ¯̀b(¯̀b � 1)fb. (4.64)

At the same time, we already know from before that L̂2ft = �ft = ~2`(`+ 1)ft and L̂2fb = �fb =
~2`(`+1)fb with the same `, which is the orbital quantum number. We thus have the two equations

`(`+ 1) = ¯̀
t(¯̀t + 1), `(`+ 1) = ¯̀

b(¯̀b � 1), (4.65)

which come up with four solutions for ¯̀
t and ¯̀

b. Out of those only one has the required property
that ¯̀

t > ¯̀
b and that is ¯̀

t = ` and ¯̀
b = �`. Since we are reaching from �` to ` in N integer steps,

we must have ` = N/2, so ` must be an integer or half-integer. The case of integers reproduces the
ranges for the azimuthal quantum number m that we had listed near Eq. (4.51). The possibility of
half-integer ` will be used for spin in section ??.
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4.5 Position representation of angular momentum states

To use the algebraic treatment to also find the position space states in section 4.3, we again mirror
what we did for the harmonic oscillator. First we require the

Position space representation of ladder operators

L̂± = ±~e±i'

✓
@

@✓
± i cot ✓

@

@'

◆
. (4.66)

• You can show this using Eq. (4.36) and Eq. (4.57).

We now know that L̂+Y `
` = 0, which using (4.66) becomes

~e±i'

✓
@

@✓
+ i cot ✓

@

@'

◆
Y `
` (✓,') = 0. (4.67)

We already know from (4.46) that the ' dependence takes the form eim', which we can use here:
Because of it we know that @

@'Y
`
` (✓,') = i`Y `

` (✓,'). Inserting that gives

✓
@

@✓
+ i cot ✓

@

@'

◆
Y `
` (✓,')| {z }

=ei`'⇥`

`
(✓)

= 0 ,
✓

@

@✓
� ` cot ✓

◆
⇥`

`(✓) = 0 (4.68)

Using d sin ✓/d✓ = cos ✓ and cot ✓ = cos ✓/ sin ✓, we can reshape this as

d⇥`
`(✓)

⇥`
`(✓)

= `
d(sin ✓)

sin ✓
,,

log⇥`
`(✓) = ` log (sin ✓) + const, , ⇥`

`(✓) = N (sin ✓)`. (4.69)

where N can be fixed by normalisation. We can now find all the other angular momentum eigen-
functions down to Y �`

` by repeatedly applying L̂� as in (4.66). What we find, up to a sign, is
(4.51). Unfortunately that is not quite obvious, but if you are sceptical about the statement you
can try it out at least for the few examples given in table 2.

We have now worked out all important properties of the eigenfunction of the angular momentum
operators L̂2 and L̂z. These functions describe the angular part of quantum states and quantum
dynamics whenever the potential is spherically symmetric. In the next week we finally also sort
out the radial part, for which we have to pick a specific potential. We shall of course pick the one
for the Hydrogen atom.
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