
Week 4
PHY 303 Quantum Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2021

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

2.3 Quantum harmonic oscillator

We now finally go beyond piecewise constant potentials, to look at the harmonic oscillator potential

V (x) =
1

2
m!2x2. (2.41)

This is very important, simply because near a local minimum, any potential will look like a har-
monic oscillator potential:

left: Near a local minimum at x0, we can write

V (x) = V (x0)| {z }
=V0
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(x � x0)2 + O(x � x0)3.

Defining V 00(x)

����
x=x0

= m!2, this gives us (2.41).

Because of its importance, we even provide two di↵erent methods to solve the TISE for the quantum
harmonic oscillator
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an algebraic method and the more direct solution via a power series.

2.3.1 Algebraic method

Let us define new linear combinations out of the position and momentum operators, so-called

Ladder operators

â± =
1

p
2m

(p̂± im!x̂) , =
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p
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◆
. (2.43)

where the + one is called raising operator and the one with � lowering operator.
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It turns out that with these operators, we can re-write the TISE Eq. (2.42) as


â+â� +

~!
2

�
�n(x) = En�n(x). (2.44)

• Gri�th discusses some motivation why we choose the form (2.43), essentially trying to bring
the form u2 + v2 in the Hamiltonian into a product (u� iv)(u+ iv).

• However now we have to be careful since the Hamiltonian contains operators, where the
ordering may be important. For example x @

@xf(x) 6=
@
@x [xf(x)].

• See the detailed derivation from (2.42) to (2.44) in Gri�th.

In that derivation, we can use the

Commutator of ladder operators:

⇥
â�, â+

⇤
⌘ â�â+ � â+â� = ~!. (2.45)

• You may remember from matrix multiplication, that usually we do not have A · B = B · A.
Since operators can be viewed as infinite dimensional matrices (section 10), you should find
Eq. (2.45) at least plausible.

• Proof: We must show identities involving operators by applying operators onto a testfunction
f(x), since e.g. having a dangling derivative as in x @

@x that is not applied onto anything does
not make sense. In this way, let us find an easier commutator first, namely

⇥
x̂, p̂

⇤
= (i~). (2.46)

To see this, we write

⇥
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⇤
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◆
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= (�i~)
�
xf 0(x)� [xf(x)]0

�
= (�i~)

�
xf 0(x)� [1f(x) + xf 0(x)]

�
= (i~)f(x).

(2.47)

Since this is true for any testfunction f(x), we have shown the operator identity (2.46).

Using either Eq. (2.46) and the definition Eq. (2.43), or the same technique as above directly
from Eq. (2.43), you can show (2.45) as an exercise.

• We will learn many additional useful rules regarding commutators in chapter 3 and discuss
them much more.

In (2.44) we just rewrote the TISE with some weird operators. Armed with the commutator (2.45),
we can now attack the crucial argument why this is useful. Namely we can show that if �(x) solves
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the TISE for energy E, then â+�(x) solves it for energy E+~!. Proof: As a first step, we see that
using (2.45), we can write Eq. (2.44) also as


â�â+ �

~!
2

�
�n(x) = En�n(x). (2.48)

Then
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�
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�
â�â+

�
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Eq. (2.48)
= (En+

~!
2 )�n

+
~!
2
(â+(�n(x)) =

�
En + ~!

�
(â+(�n(x)).

(2.49)

which means that â+(�n(x)) solves the TISE with energy E + ~! as claimed. Similarly we can
show that â�(�(x)) solves it for energy E � ~!.

left: This now explains why we call â±
ladder operators. Given ANY solution
of the problem �(x) we are raising the
energy with â+, lowering it with â�, and
thus can build a ladder of di↵erent en-
ergy values, see diagram on the left.

Of course to use this, we first need at least one solution �(x), which we don’t have yet. To get one,
consider repeated application of â�. Since the energy is reduced everytime, at some point it would
have to become negative. However it is not possible that E < minxV (x) (see e.g. Gri�th Problem
2.2). This means that at some point we require â��0(x) = 0 for some “lowest step” on the ladder
�0, to terminate generating lower and lower energy solutions9. Writing this explicitly from (2.43)
in terms of the position and momentum operator:

1
p
2m
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@x
� im!x̂

◆
�0 = 0. (2.50)

This di↵erential equation is now easy to solve, in contrast to the original one. We sort things a bit
and then integrate both side’:

d�0

dx
= �
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~ x�0 )

Z
d�0

�0
= �

m!

~

Z
dx x ) ln�0 = �

m!

2~ x2 + const ! �0(x) = N e�
m!
2~ x2

.

(2.51)

with � =
p
~/m/!. Since we had demanded â��0(x) = 0, we can directly see from Eq. (2.48) that

the energy of this state is E0 = ~!/2. With that we have now solved the TISE for the

9 See Gri�th for one other possibility, and why that does not happen.
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Quantum harmonic oscillator

�n(x) = Nn(â+)
ne�

1
2

x2

�2 , (2.52)

En =

✓
n+

1

2

◆
~! (2.53)

with eigenfunction �n, normalisation factor Nn, zero point uncertainty � =
p
~/(m!).

• To generate all other slutions from Eq. (2.51) we used our earlier result (2.49). For example

we can generate �1(x) ⇠ (â+)ne
� 1

2
x2

�2 and then normalize it. Using Eq. (2.43), this gives us
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We will provide drawings of this function later.

• The unknown integration constant const turned into N in (2.51) and Nn in (2.52) and has
to be fixed for each separately by normalisation using Eq. (1.6.1).

• We will discuss the physics of the quantum SHO and detailed shape of wavefunctions shortly,
first we shall see one more completely di↵erent method to arrive at the above solutions.

2.3.2 Analytical method

The solution of the preceding section is very elegant, but very tricky. I would not have thought of it
myself, for sure, would you?. We can also try to solve the TISE (2.42) in a more generally applicable
way. Let us first move to dimensionless units for space ⇠ = x/� and energy Kn = 2En/(~!).
Drawing on section 2.3.1, this means that we measure space in units of the zero point uncertainty
and energy in units of ~!. Converting the di↵erential opertor in (2.42), we see that this tidies the
equation up quite a bit, and we reach

d

d⇠
�n(⇠) = (⇠2 �Kn)�n(⇠). (2.55)

We first see what happens when ⇠ ! 1 and hence ⇠ � K, in that case we have d
d⇠�n(⇠) = ⇠2�n(⇠).

This has the approximate solution

�n(⇠) ⇡ Ae�⇠2/2 +Be�⇠2/2. (2.56)

To see this take the double derivative of (2.56) wrt. ⇠, and in the resultant expression use that
⇠ ! 1 which means only the highest powers of ⇠ in any term need to be considered. Onlt the
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term ⇠ A can be normalized, so we must chose B = 0. Now that we know how the function has to
behave at large ⇠, let us build this form into our solution attempt, by defining

�n(⇠) ⇡ h(⇠)e�
⇠2

2 . (2.57)

(Techincally we should write hn(⇠), but we shall supress that until Eq. (2.64)). We can plug (2.57)
into the TISE (2.55) (see Gri�th) and reach an equation for h(⇠)

d2h(⇠)

d⇠2
� 2⇠

dh(⇠)

d⇠
+ (K � 1)h(⇠) = 0. (2.58)

To solve this, we express the solution in terms of a

Power series expansion:

h(⇠) =
1X

j=0

aj⇠
j . (2.59)

We then insert (2.59) into (2.58), which gives

1X

j=0

[(j + 1)(j + 2)aj+2 � 2jaj + (K � 1)aj ]| {z }
=0

⇠j = 0. (2.60)

Since all the di↵erent powers of ⇠ are linearly independent, the coe�cient of all ⇠j have to vanish
seperately, which gives us:

aj+2 =
2j + 1�K

(j + 1)(j + 2)
aj . (2.61)

This is a recursion formula, such that if we know a0 and a1, it gives us all the higher aj . One can
show, that the series (2.59) with coe�cients fulfilling (2.61) must terminate, i.e. possess a highest
j = n such that all aj0 = 0 for j0 > n (see e.g. Gri�th). Essentially, if it did not, the resultant
function would not be normalizable.

Note that Eqs. (2.59) and (2.61) e↵ectively set up two independent power series for the even and
odd part of the function

heven(⇠) = a0 + a2⇠
2 + a4⇠

4 + · · · (even), (2.62)

hodd(⇠) = a1⇠ + a3⇠
3 + a5⇠

5 + · · · (odd) (2.63)

We can see that the only way to terminate the series at j = n is if 2n + 1 = K. Since it only
terminates one of the even or odd series, the other one must have been fully zero due to a0 = 0 or
a1 = 0. Alternatively one can also show that an even potential V (x) = V (�x) gives rise to either
even or odd eigenfunctions (exercise/assignment). We can rewrite 2n+1 = K into En = (n+1/2)~!,
so we just re-discovered Eq. (2.53). From the discussion so far we see that h(⇠) which terminates
at j = n is a polynamical of degree n. All up we find the
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Explicit eigenfunctions of the quantum harmonic oscillator as

�n(x) = NnHn

⇣x
�

⌘
e�

1
2

x2

�2 , (2.64)

with Nn = (⇡�2)�1/4(2nn!)�1/2 and Hn(⇠) a Hermite polynomial of degree n.

• The lowest Hermite polynomials are

H0 = 1, (2.65)

H1 = 2x, (2.66)

H2 = 4x2 � 2, (2.67)

H3 = 8x3 � 12x. (2.68)

Note, that with the expression for H1, (2.64) of course agrees with the first excited state we
had found in Eq. (2.54).

left: On the left we draw V (x), En and �n(x) for the
harmonic oscillator in the same style as for particle in the
box (PIB) before (near Eq. (2.18)).

• As for the PIB, they alternate between even and
odd.

• As for the finite-PIB, wavefunctions extend expo-
nentially decaying into the classically forbidden re-
gion where V (x) > E.

• Unlike the PIB, the quantized energies are equidis-
tant En+1 � En = ~!.

• Again, the lowest energy is nonzero. E = ~!/2 is called the zero-point energy. You can
calculate also the position uncertainty in the ground-state (see assignment 2, Eq. (1.35)) and
you shall find �x = � (hence the name). This is due to what is called zero-point motion.

The procedure that we have used to solve the di↵erential equation (2.55) is more generally useful:

(i) First find asymptotic solutions at large |⇠| ! 1.

(ii) Build the structure of that solution into an Ansatz such as (2.57), and then solve for the
detailed form with a power series such as (2.59).

On first sight, the solutions �n(x) seem to have little to do with what we know of the classical
harmonic oscillator. However the connections are only slightly hidden. Consider the time-averaged
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probability distribution of the classical oscillator. We know it follows x(t) = xctp sin (!t). If you
look at a large random ensemble of oscillators, the probability ⇢(x) to find in between position x and

x+dx must be ⇢(x) ⇠ dx/v(x). Since v(t) = !xctp cos (!t) we can write10 v(x) = (!
q

x2ctp � x2)�1.

We can now see the

Example 15, Correspondence principle:

left: The sketch on the left shows a very high SHO
state �n(x) (blue), and the classical probability distri-
bution ⇢(x) (red). We see that the average amplitude
of the quantum state precisely follows ⇢(x). If we now
were e.g. averaging over a few adjacent SHO states,
we recover the classical result.

There are more signs of the underlying classical physics: In example 13, we had seen how the PIB
states can be decomposed in plane waves that correspond to a classical particle bouncing back
and forth. In that case, the probability distribution ⇢(x) ⇠ sin2(p/~x), which means the distance
between zeros gave some indication of the momentum (velocity). You see in example 15 how the
distance between zeros decreases in the centre and increases at the flanks. This again, reflects that
we know the oscillator will move fastest around x = 0 and slowest near x = xctp (the classical
turning point).

Example 16, Making the quantum oscillator classical again: Some more hidden
known physics:

left: If we e.g. solve the TDSE ?? on a com-
puter, starting from a Gaussian wavefunction that is
o↵set by x0 from the centre:  (x, t = 0) = �0(x �

x0), the probability density preserves a Gaussian
shape ⇢(x) ⇠ e�(x�x(t))2/�2

, with x(t) = x0 cos(!t).
Besides retaining the zero-point uncertainty � (inde-
pendent of time), the centre of the position space dis-
tribution thus just does the classical oscillation.

You can again check this out life using this online app. Analytical proof and discussion:

Assignment 4.

10Using cos2 +sin2 = 1.

56

http://www.falstad.com/qm1d/


Example 17, Quantum harmonic oscillators in science: Since every potential looks
like a harmonic oscillator near local minima (and hence near stable equilibirium points), as
discussed at the beginning of section 2.3, the importance of the QSHO cannot be overstated.
You will encounter it again for:

• Vibrations of molecules around their equilibirum bond lengths.

• Lattice vibrations of ions in solid materials, e.g. metals.

• Ions and atoms trappe in electromagnetic fields (and otherwise vacuum), for e.g. quan-
tum computing.

You will also see, that operators such as â± and the mathematical rules induced by (2.45)
can also be used to climb a ladder in terms of “particle number”, instead of oscillator energy.
Someof the concepts in this section thus form the basis of many-body quantum physics,
quantum field theory and particle physics.

57


	Administrative affairs
	Course Outline
	Math content

	Motivation, foundations and review
	Motivation
	Research frontier
	Fundamental extensions of quantum mechanics (not in this course)
	From classical to quantum mechanics
	Mathematical Foundations of Quantum mechanics
	Complex numbers
	Probability theory
	Vector spaces and matrices
	Hilbertspaces and Operators

	The basic structure of quantum mechanics
	Normalisation and phase of wavefunctions
	Momentum and other operators
	Heisenberg's uncertainty principle
	Probability currents
	Stationary states


	Solvable quantum problems in one dimension
	Free particle eigenstates
	Piecewise constant potentials
	Infinite square well
	Finite square well
	Scattering
	Square barrier

	Quantum harmonic oscillator
	Algebraic method
	Analytical method

	Free particles
	Travelling waves
	Wavepackets

	Fourier-decomposition
	The Gaussian wavepacket

	Mathematical Interlude
	Bra-ket notation
	Inner products
	Matrix representation of operators
	Hermitian Operators
	The generalized statistical interpretation
	The quantum mechanical postulates

	The generalized uncertainty principle
	The energy-time uncertainty relation



