
Week 1
PHY 303 Quantum Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2021

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

1.5 Mathematical Foundations of Quantum mechanics

In the previous week, we got reminded that quantum physics involves probability theory and
wavefunctions in a central way. Let us thus briefly review (or provide) the essential math to deal
with both of these. For this we have preponed some of Gri�th chapter 3, particularly 3.2. You can
find many other QM books that do all the math at the beginning, we will still leave most of it for
our chapter 3 later, as Gri�th does.

1.5.1 Complex numbers

I shall assume you know complex numbers from math courses. The following are the absolute bare

essentials provided for sake of completeness and to define notation. If we later use anything related

to complex numbers that you had not seen before, please let me know. I might then include those

points in this section. See also PHy106, week 8.

Quantum mechanics involves complex numbers in an essential way. A complex number can be
written as z = x+ iy, where the imaginary unit i is defined via i =

p
�1. We then call x = Re[z]

the real part and y = Im[z] the imaginary part of z. Since it has two components, we can draw
each complex number as a 2D vector (x, y) in a 2D space called the complex plane. That also
makes apparent that we can write it in polar notation z = rei', where 0  r is a real amplitude
and 0  '  2⇡ a real phase.

Each complex number has what is called its complex conjugate denoted by z⇤ which is z⇤ = x� iy
(i.e. we just flip the sign of the imaginary part). With this we can find the modulus of a complex
number as |z| =

p
z⇤z =

p
x2 + y2, just as would be the case for a 2D vector.

A very useful equation is Euler’s equation:

eiz = e�y+ix = e�y[cos(x) + i sin(x)]. (1.4)

1.5.2 Probability theory

Here we only establish the most important concepts of probability theory, to have everyone on the
same page.
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Probabilities Consider a random variable j with discrete/integer outcomes. Suppose we
draw from a set of N elements, where outcome j is contained N(j) times. Clearly N =P

j N(j). The probability of outcome j is then P (j) = N(j)/N . All the values P (j) together
are called a probability distribution. The average (mean) outcome is

hji =
X

j

P (j)j. (1.5)

Example 2, Age of computer players: (discrete) Consider the following set of players
of some online computer game, with ages: 11, 12 (⇥2), 13 (⇥3),15, 18 (⇥5), 19 (⇥2). For
this set, we can draw the histogram below.

left: Histogram of the num-
ber of occurrences N(j) of
event j (here j =age),
within a sample of 13 play-
ers. [Ignore the green box
at 15]

Using P (j) = N(j)/N we find e.g. the probability that a randomly chosen player has age
13 to be P (13) = 3/13 =30%. The mean age turns out to be 14.4, it gives an indication of
the centre of the probability distribution. The mean is not to be confused with the most
likely outcome, which is here 18. In fact, there is no outcome possible near the mean value
(for 14,15) at all! Another concept would be the median which is the value j for which the
probability of a higher result equals that of a lower resulta

aThis is not used as much in quantum mechanics.

Above we dealt with random variables that take integer values. For continous outcomes x we define

Probability densities Consider a random variable x with continuous outcomes. We de-
scribe those with a probability density ⇢(x) such that the probability for the outcome to lie
between x and x+ dx is given by ⇢(x)dx. The probability for the result to lie between a and

b then is Pab =
R b
a ⇢(x)dx.

The

Mean of the probability density is

hxi =

Z 1

�1
x⇢(x)dx (1.6)

• In quantum mechanics, we usually refer to the mean as expectation value.
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• Clearly the probability to have an arbitrary (unspecified) outcome has to be 1. This impliesP
j P (j) = 1 (discrete) or

R1
�1 ⇢(x)dx = 1 (continuous).

• From the definition P (j) = N(j)/N it is obvious that a probability has to be a positive real number
(since the same is true for the “number of some items”). Saying the probability for an event is
�5%makes as little sense as saying “I own -5 cars”. We state probabilities are positive and real
here so clearly, since it provides a very imporant sanity check for many quantum mechanical
calculations, that DO involve negative and complex numbers in between (but not in the final
result if the latter is a probability).

Example 3, Weight of computer players: (continuous) Weight can take any value, not
just integers.

left: An exemplary continuous prob-
ability distribution for the weight of
an average human is shown on the
left (possibly unrealistic).

Using e.g. the formula Pab =
R b
a ⇢(x)dx, we can infer information such as “the probability

for the weight to be > 88 kg is 50%.

• Comparing example 2 and example 3: Physically, of course the age was also a continuous
quantity. We had referred to the custom of giving an integer age for a person, rounding
down.

• Be aware, that the figures are showing two quantities of slightly di↵erent character, example
2 shows a histogram for the number of occurrences within a finite sample size of N = 13,
while example 3 discusses a probability distribution that does not refer to a specific sample
size.

An important property of a histogram, probability distribution or probability density is how “scat-
tered it is”. For example the set of outcomes [3,50,123,555] varies very widely (large scatter), while
outcomes [122,123,123,124] are much less scattered. To quantify this we use the following
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Measures for the width of a probability distribution
The variance �2 of a probability distribution is

�2 = Var[P ] = h(j � hji)2i =
X

j

P (j)(j � hji)2, �2 =

Z
dx ⇢(x)(x� hxi)2 (1.7)

in the discrete and continuous cases respectively. From these, we define the
standard deviation

� =
p

Var =
p

h(j � hji)2i, � =

sZ
dx ⇢(x)(x� hxi)2 (1.8)

• The variance adds up the squares of the deviation j � hji from the mean.

• Exercise: One can show that �2 = hj2i�hji2 (for both discrete and continuous). This formula
is usually easier to use than the direct definition.

• The standard deviation gives a measure of the width of a probability density. Not to be
confused with the standard error �/

p
N , which gives the error of the mean hji.

Example 4, Varying width of probability distribution: Below are three age distribu-
tions such as in example 2,

left: drawn with symbols
(i) blue squares (ii) red cir-
cles (iii) violet triangles.

If you would calculate the mean according to Eq. (1.5), you’d find the same answer
(hji = 8) for each. However the standard deviations using (1.8) are (i) � = 0 (ii) � = 1/

p
3

(iii) � =
p

14/3 ⇡ 2. You can see how the standard deviation gets larger for wider
distributions. It roughly correspond to the (half) width of the distribution.

Time dependence of probability distributions: Nature o↵ers many examples of probability distribu-
tions that (may) depend on time, we will see many of those in quantum mechanics. An example
in a totally di↵erent context is given below:
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Example 5, Value degradation of a car: Cars quickly loose value on the second hand
market after purchasing them. The figure below shows the value distribution of a certain
model at three di↵erent times.

left: Value v of a car
model at the moment of
purchase (black), after one
year (brown) and after two
years (blue).

initially there is only a small spread due to di↵erent vendor margins. After one years, cars
loose value since they age, but also the width of the distribution increases as cars experiences
di↵erent mishaps such as scratches.

1.5.3 Vector spaces and matrices

For handling wavefunctions in quantum mechanics, it is very useful to realize that these wavefunc-
tions can be viewed as vectors, which we shall explain in section 1.5.4. You will be familiar with the
concept of a vector space from linear algebra, most often dealing with 3-component (3D) vectors
v = [vx, vy, vz]T that can label a point in 3D space, let us first briefly review those concepts in the
present section.
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Vector space: A vector space V over a fielda F is a set of objects with an addition
operation “+” (of two vectors v 2 V ) and a multiplication operation “⇥” (of an element
in the field f 2 F and a vector). The operations have to fulfill the following axioms (for
u,v,w 2 V and a, b 2 F )

(i) u+ (v +w) = (u+ v) +w (associativity of +)

(ii) u+ v = v + u (commutativity of +)

(iii) 90 such that v + 0 = v 8v (identity element of +)

(iv) 9�v such that v + (�v) = 0 8v (inverse element for +)

(v) a(u+ v) = au+ av, and (a+ b)u = au+ bu (distributivity of scalar multiplication)

(vi) 1v = v (where 1 denotes the multiplicative identity in the field

(vii) a(bv) = (ab)v (compatibility of scalar multiplication with field multiplication)

We have used the usual notation not to write the ⇥ symbol explicitly.

ae.g. type of numbers, such as real or complex numbers

• The example you probably know best is R3, the set of three-component real column vectors
v = [vx, vy, vz]T , that can define a point in 3D space3. Here we use the operation “+” as
v + u ⌘ [vx + ux, vy + uy, vz + uz]T and a ⇥ v ⌘ [aux, auy, auz]T . You can verify that these
objects and operations fulfill all the axioms in the definition above.

• Note that the complex numbers also form a field, so the first generalisation we will do in the
following is to allow a, b and the column entries of the vectors to be complex.

• An important concept in a vector space is that of orthogonality, which we define via the
scalar product

v⇤
· u = v⇤xux + v⇤yuy + v⇤zuz, (1.9)

calling vectors orthogonal when v⇤
· u = 0.

• Another important concept is the norm of a vector, which we define as ||v|| = |v| =
p

|v⇤ · v|.

• The last two dotpoints can also be defined via a set of axioms (which we defer to section 3.2).
The advantage of all these axioms, is that they then allow the generalisation of these con-
cepts to any objects fulfilling them. We want to use this very shortly, to apply them all to
wavefunctions.

Every vector space V has a

3Here T indicates the “transpose”. I.e. [vx, vy, vz]
T =

2

4
vx
vy
vz

3

5
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Basis: as a set B of d linearly independent vectors B = {bn} that spans the space, which
means we can write every v 2 V as

v =
d�1X

n=1

vnbn, (1.10)

for some suitable coe�cients vn 2 F .

• Each vector space can have many di↵erent bases.

• We call the number of elements d in the basis {bn} the dimension of the vector space.

• Special bases are orthonormal bases, that fulfill ||bn|| = 1 and b⇤
n · bm = �nm. We can then

find the coe�cients for Eq. (1.10) using vm = b⇤
m · v (exercise).

• Again going to the example R3, you would usually think of the orthonormal basis {i, j,k}
for i = [1, 0, 0]T , j = [0, 1, 0]T , k = [0, 0, 1]T , but could equally well choose {b1,b2,b3}

with b1 = 1p
3
[1, 1, 1]T , b2 = 1p

6
[1,�2, 1]T , b3 = 1p

2
[1, 0,�1]T , which is also orthonormal

(exercise).

When working with vectors, one often also ends up dealing with matrices. You may know an n⇥m
matrix firstly as a rectangular array (tableaux, grid) of numbers with n rows and m columns.
However mathematicians would rather define a matrix via a:

Linear transformation: A linear transformation T is a map from an N dimensional
vector space V to an M dimensional one W :

T : v ! T (v) = w, (1.11)

that maps vectors v 2 V onto those w 2 W , and is linear, which means:

T (av + bw) = aT (v) + bT (w). (1.12)

For any deeper discussion of linear transformations we refer to linear algebra books or courses.

Example 6, Rotations: One example of a linear map are rotations in R3:

left: A rotation by an angle ✓ around the
z-axis uniquely allocates a rotated vector w
(brown) to each input vector v (pink).
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We mostly require the case in the following, where both vector spaces are identical V = W ,
so we shall assume that in the following. It turns out that we know everything about a linear
transformation, if we know what it does with each orthonormal basis vector. To see this, let us
apply it to one of them:

T (bj) =
d=NX

i=1

Tijbi. (1.13)

Here we have used the fact that, regardless of what the map does, we can write the result again in
the basis B. Using the orthonormality of the basis, we can find the coe�cients Tij = b⇤

i · T (bj),
i.e. by “projecting” Eq. (1.14) onto the basis vector bi. Let us now write both, an arbitrary
input vector v and output vector w of the transformation in the basis B, i.e. v =

P
k vkbk and

w =
P

iwibi. We then see that:

T (v) = T (
X

k

vkbk)
Eq. (1.12)

=
X

k

vkT (bk)
Eq. (1.14)

=
X

k

vk
X

i

Tikbi ⌘
X

i

wi|{z}
=
P

k Tikvk

bi. (1.14)

We thus know all the coe�cients wi =
P

k Tikvk in the basis expansion for w in terms of those of
v and the numbers Tik.

We can write these as a

Matrix: A matrix M is an N ⇥M table of numbers Mik, where i numbers the row and k
the column. The numbers ik are called matrix elements.

• As per discussion before, we can view every matrix as a representation of a linear transfor-
mation using specific bases.

• You recognise wi =
P

k Tikvk as the component notation for the vector matrix product w =
T · v.

• Gri�th reminds you of all these things only in section 3.1.3. I would encourage you to jump
ahead there if you wish to. Do not be disturbed by the notation used, where they write | v i
instead of vector v (just swap the notation in your head). We shall discuss the reason for
that notation in section 3.1 later.

Example 7, Rotation matrices: We can again look at example 6 and thus now infer,
that for the linear transformation “rotation around z-axis by angle ✓”, there exists a specific
matrix (called rotation matrix) O

z
(✓), which provides w = O

z
(✓)v and w0 = O

z
(✓)v0. Note

that this is a single matrix, that rotates all vectors correctly. If you have a deeper interest,

see my notes for PHY305, section 3.4 .

Throughout physics, we make extensive use of the
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Matrix eigenvalue equation:

M · vk = �kvk, (1.15)

for a square matrix M , with eigenvectors vk for eigenvalues �k.

• The subscript k indicates that an n⇥n matrix can have multiple eigenvectors and eigenvalues,
up to n.

• Sometimes, multiple eigenvectors share the same eigenvalue. That eigenvalue is then called
degenerate.

• We skip a review here on how to practically find the eigenvalues and eigenvectors of a given
matrix. However it will be important for this course. If you are not 100% comfortable, please
consult your favorite linear algebra book or course, or Gri�th section 3.1.4. For assignments
it will typically be permitted and recommended to find eigenvalues and eigenvectors with a
computer, for this get your copy of mathematica from the CC webpage and learn about the
command EigenSystem.

We will deal here mostly with complex square matrices. Even for that subset, there are lots of
di↵erent types of matrices that have their own name, which you are reminded of in the following4:

Special matrices:
Symmetric matrices: S = ST , Hermitian matrices: O = O†,

Orthogonal matrices: O ·OT = 1, Unitary matrices: U · U † = 1.

Finally we are in a position to make the statement for which we have included section 1.5.3. If you
don’t like any of the above, just remember the following

Eigenvectors of a Hermitian matrix: A N ⇥N Hermitian matrix O with Oij 2 C has
exactly N eigenvectors with real eigenvalues (not necessarily di↵erent). These eigenvectors
{vk} form a basis of the vector space CN .

Finally, for many5 matrices one can do a

4Here T indicates the “transpose”. I.e.


a b
c d

�T

=


a c
b d

�
and † the “complex adjoint” (transpose plus

complex conjugation)


a b
c d

�†

=


a⇤ c⇤

b⇤ d⇤

�

5but not all, see linear algebra
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Matrix diagonalisation: We write the matrix M as a product

M = O ·D ·O�1 (1.16)

where D is a diagonal matrix which contains the eigenvalues �k on the diagonal (see
Eq. (1.15)), and O is an orthogonal matrix (see box above), which contains the eigenvectors
as columns, i.e. O = [v1,v2,v3].

• Importantly for us, later, Hermitian and Orthogonal matrices are always diagonalizable.

1.5.4 Hilbertspaces and Operators

As we promised, it turns out “the space of all functions f(x) with certain properties”, is also a
vector space. For these properties we shall take that

R
dx|f(x)|2 < 1, which is called L2 the set of

all square integrable functions.

The mathematically minded can see that functions are also “vectors” by ticking o↵ the definitions
of a vector space in section 1.5.3 one by one (exercise, see also Gri�th section 3.2). A more intu-
itive way to understand why functions can be treated as vectors is to discretize the space they are
defined on as in the figure below. You would have to do this anyway, whenever you want to handle
functions with a computer.

left: A continuous real function f(x) (blue)
of one real number can be discretised by al-
lowing only certain input values xn with inte-
ger index n, and thus requiring function val-
ues at those points only fn = f(xn). When
we make the spacing �x = |xn+1 � xn|
between adjacent discrete points infinitely
small, we recover the continuous function.

Once discretized, we can represent the function f(x) as a vector f = [f1, f2, f3, · · · , fn, fn+1 · · · ]T

just as in section 1.5.3. However, since we formally would need to define infinitely many points
xk to cover �1 < x < 1, this is an infinite dimensional vector. The advantage of realizing that
e.g. L2 forms a vector space, is that we can generalize all the other useful concepts of section 1.5.3
to functions as well, as we shall do in the following.

We start with the scalar product v · u, where we can instead use a

Scalar product of functions. Consider two functions in L2: f(x), g(x). We take

(f, g) =

Z 1

�1
dxf⇤(x)g(x) (1.17)

as their scalar product.
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• Mathematically one can again use a formal definition of the properties of a scalar product,
which v · u and (f, g) both fulfill, see linear-algebra books.

• Using the function scalar product, we can mostly importantly directly define the norm of a function
||f || = (f, f) =

R1
�1 dx|f(x)|2, in direct analogy to the norm of a vector v · v. We then also

call two functions f and g orthogonal, if (f, g) = 0.

Example 8, Discretized orthogonal functions: Consider the two (real) functions
below, for which we also indicate a possible discretisation.

left: Two real functions f
(black) and g (red), with
their discretisation •

Since the integration (f, g) =
R1
�1 dxf⇤(x)g(x) ⌘ I is originally anyway defined via

the discrete sum I =
P

n�xf⇤
ngn, we can see that this is directly proportional to a vector

scalar product. We can also see how these two functions are orthogonal, since each possible
product f⇤

ngn is compensated by one other term of opposite sign.

We can combine both prior concepts and define the

Hilbert space: as a completea vector space with a certain scalar product.

aSee math books, not so crucial here

• The primary example here is L2 with the scalar product (1.17).

• We later see that all quantum wavefunctions form what we call the Hilbert-space in this
lecture. This will be enough for chapter 2 of this lecture. Later, in chapter 3, we introduce
even more abstract Hilbert spaces.

Since it is a vector space, also the Hilbert space L2 has a basis:

Function space basis: We can write every function f(x) in L2 in terms of an
infinite dimensional basis {bn(x)}, such that

f(x) =
1X

n=0

fnbn(x). (1.18)

• As for column vector-space bases, there are many di↵erent bases.
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Example 9, Function space bases: A basis that you have already seen in other courses,
is the basis of polynomials, which is used in the Taylor expansion:

f(x) =
1X

n=0

 
f (n)(0)

n!

!

| {z }
=fn

xn|{z}
=bn(x)

. (1.19)

Another one is used in the Fourier series for even functions with period L (See PHY106,
section 2.3.2):

f(x) =
1X

n=0

f̃n cos

✓
2⇡n

L
x

◆
. (1.20)

We will see many more examples in this course.

Next, we want to generalize the concept of a matrix (or linear transformation) to function vector
spaces. We use the

Linear operator: as a linear map O : L2 ! L2 of one function onto another, i.e.

Ôf(x) = g(x). (1.21)

We say in (1.21) the operator Ô is applied onto the function f(x) to yield the function g(x).

• It is often helpful when doing quantum mechanics, to denote all operators with hats to dis-
tinguish them from the variables they describe (eigenvalues, see below). We shall consistently
use the hat in this lecture.

• Note that (1.21) is structurally equivalent to a matrix-vector multiplication Mv = w or the
linear map (1.11) (in fact it IS a linear map, in the vector space of functions).

• Gri�th calls Operators also “linear transformations”, but many other books call them oper-
ators.

To once again understand the relation between matrices and operators through a discretisation of
space, see this example
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Example 10, Di↵erential operator as a matrix: A simple example is the derivative
operator Ô !

@
@x . Then, for example Ô e�x2

|{z}
=f(x)

= �2xe�x2

| {z }
=g(x)

.

Both functions are drawn below in a discretized form as used in example 1.5.4.

First we can write each function as a vector f = [f(x1), f(x2), · · · , f(xn), · · · ]T , g =
[g(x1), g(x2), · · · , g(xn), · · · ]T . We recall (one possible) definition of a derivative f 0(x) =
lim�x!0[f(x +�x) � f(x ��x)]/(2�x), but use it without the limit �x ! 0, for a small
but finite �x = x2 � x1. You can convince yourself that it is then possible to write a matrix

O =
1

2�x

2

6666666664

0 1 0 0 0 0
�1 0 1 0 0 0
0 �1 0 1 0 0 · · ·

0 0 �1 0 1 0
0 0 0 �1 0 1
0 0 0 0 �1 0

...

3

7777777775

, (1.22)

such that g = O · f . We call O a matrix representation of the operator Ô.

We will see later (in section 3) that in quantum mechanics indeed any operator can be represented
by a matrix.

At this point we can write the

Operator eigenvalue equation:

Ôfn(x) = onfn(x), (1.23)

for a linear operator Ô, and eigenvalues on for eigenfunction fn(x).

• An example would be
@

@x|{z}
=Ô

exp [kx]| {z }
=fk(x)

= k|{z}
=�k

exp [kx].
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Due to the analogy between matrices and operators discussed in example 10, all names for matrices
that we introduced earlier generalize also for operators. In particular we require the notion of a

Hermitian operator as an operator Ô for which

✓Z 1

�1
dx f⇤(x)Ôg(x)

◆⇤
=

Z 1

�1
dx g⇤(x)Ôf(x). (1.24)

• Note, the definition makes use of the scalar product (1.17) between f(x) and Ôg(x).

• An example that you met in PHY106 (week 8), is Ô = �i~ @
@x . Note, without the i it would

not be Hermitian.

We now have at last reached the point which we wanted to deliver before week 2, that is the

Eigenfunctions of a Hermitian operator form an orthonormal basis of the Hilbertspace.
Let Ôfn(x) = onfn(x). That the fn(x) form a basis means that we can write any arbitrary
function g(x) as

g(x) =
1X

n=0

gnfn(x), (1.25)

for some suitable coe�cients gn 2 C. That the fn(x) are orthonormal implies

(fn, fk) =

Z
dx f⇤

n(x)fk(x) = �nk (1.26)

• We will prove this statement in week 6 and discuss this much more.

• Being able to make the statement above was the reason that we preponed some element from
Gri�th chapter 3. It is possible to understand most of the material from weeks 2-5 also
without it, and they will provide many illustrative examples. Hence if the last parts of this
week have confused you, don’t worry for now, but please revisit this after week 6.

The above is a lot of material for one “ week”, however I assume that the elements on complex
numbers, vectors, matrices and probability theory are mostly familiar to you. Wherever it was
not, it is crucial that you revise this from other sources. In practice, quantum mechanics very
heavily requires linear algebra and probability theory. For the part of the week above starting from
section 1.5.4 (which the mathematicians call “functional analysis”), I do NOT assume that you
knew it before. Hence, if that was too fast, please ask plenty of questions.
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