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These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

5 Two particle quantum mechanics

We had already taken a first glimpse at how to handle more than one particle in quantum mechanics
in section 4.1.3 and section 4.6.1. Let us explore this a bit more, to introduce some of the most
fundamental and far reaching implications.

We had already given a generic Hamiltonian for two non-interacting particles in (4.28). When there
are no interactions, we can again make a product Ansatz in the two particle wavefunction (5.2),
writing

 (ra, rb) = �(ra)⌘(rb), (5.1)

perform separation of variables on the TISE that follows from the Hamiltonian (4.28) and reach
two independent TISEs:


� ~2
2ma

�ra + V (ra)

�
�(ra) = Ea�(ra),


� ~2
2mb

�rb + V (rb)

�
⌘(rb) = Eb⌘(rb). (5.2)

Suppose each Hamiltonian has quantised eigenstates �n(ra), ⌘m(rb), a joint solution could be
 nm(ra, rb) = �n(ra)⌘m(rb), which we would reasonably interpret as corresponding to “particle a
is in state n and particle b is in state m”. However this idea runs into some fundamental trouble:

5.1 Indistinguishable particles

How would you distinguish two identical fundamental particles? I.e. two electrons in the same spin
state? The answer is you cannot, since there is no additional label you can flag it with. In classical
mechanics, you could in principle distinguish even fully identical objects a and b via their position
history ra(t) and rb(t), but due to the HUP (1.46) this does not work in quantum mechanics, see
diagram below:
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• We conclude that a statement like “particle a is in state n and particle b is in state m” does
not make sense for indistinguishable particles.

• All we could hope to say is “there is some particle in state n and another one in state m”.

• This implies that mathematically, the wavefunction  (ra, rb) must be equivalent to  (rb, ra).

• In practice, we can often also deal with “distinguishable” particles in quantum mechanics,
even if they are the same type of particle, as long as they never get too close to each other14.

Since the overall phase or sign of a wave-function does not matter (see section 1.6.1), “being
equivalent” still allows for a change in the complex phase. We thus demand  (ra, rb) = ei' (rb, ra).
Swapping the position again then gives · · · = (ei')2 (ra, rb). How we are back where we started,
hence we need (ei')2 = 1, which is true for ' = 0,⇡. We have thus shown the

Indistinguishable particle exchange symmetry

 (ra, rb) = ± (rb, ra) . (5.3)

The two-particle wavefunction for two indistinguishable particles must be symmetric or anti-
symmetric under exchange of those two particles.

14Meaning their wavefunctions never overlapp
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Example 43, (Anti-)symmetrized wavefunctions: Let us reconsider the state we had
seen earlier  nm(ra, rb) = �n(ra)⌘m(rb). Since particles are indistinguishable ma = mb in
(5.2) and �n and ⌘m really label the same set of eigenfunctions of a TISE. Let us thus use the
label � only:  nm(ra, rb) = �n(ra)�m(rb). We can fix the symmetrisation issues by writing

 ̃nm(ra, rb) =
1p
2
(�n(ra)�m(rb)± �m(ra)�n(rb)) , (5.4)

either way this now satisfies (5.3), but the meaning has changed from “particle a is in state
n and particle b is in state m” to “there is some particle in state n and another one in state
m” as required.

We also know which are which:

Bosons and Fermions Particles with integer spin s = 0, 1, 2 are called Bosons. They
are the ones which have a symmetric many-body wavefunction, i.e. � in (5.3). Particles
with half-integer spin s = 1

2 ,
3
2 ,

5
2 are called Fermions. They are the ones which have an

anit-symmetric many-body wavefunction, i.e.  in (5.3).

• You can show this later in relativistic quantum mechanics, where the link between wavefunc-
tion symmetry and spin quantum number arises from the requirement to form a Lorentz
invariant Hamiltonian where events outside the light-cone cannot a↵ect each other. This is
called spin-statistics theorem.

• Fundamental Fermions are all the matter particles, electrons, quarks and their higher genera-
tion counterparts as well as neutrinos. You can deduce from repeated applications of (4.126)
that the combinations of an odd number of Fermions is a Fermion, while the combination of
an even number of Fermions is a Boson. Thus also neutrons and protons are Fermions, since
they contain three quarks. Then in turn, neutral atoms with an odd number of neutrons are
also Fermions.

• Fundamental Bosons are all the force carriers photons, gluons, W and Z Bosons and the Higgs
Boson. Composite Bosons are e.g. pions, ⇡0,±, which are bound states of a quark and an anti-
quark. With the same argumentation as above, also neutral atoms with an even number of
neutrons are Bosons.

• The most important di↵erence between a Fermionic and a Bosonic wavefunction is at ra =
rb = r, i.e. when the particles try to be at the same place. For Bosons this is fine, for Fermions
(5.3) gives you | (r, r) |2 = 0, i.e. there is zero probability for two Fermions to ever be in the
same place.

The perhaps most important consequence of the above is the

Pauli exclusion principle Two indistinguishable Fermions cannot occupy the same single
particle quantum state �0.
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• Both particle in the same state would be described by  (ra, rb) = �0(ra)�0(rb), but that wave-
functions is not correctly anti-symmetric. We would have to write  (ra, rb) = [�0(ra)�0(rb)�
�0(rb)�0(ra)]/

p
2 = 0 in an attempt to a anti-symmetrize this to fulfill (5.3), but clearly this

vanishes. Note that the tag “indistinguishable Fermions” only applies to particles in identical
spin-states (otherwise you can distinguish them via the spin state).

• Pauli’s exclusion principle and the Hydrogen states from section 4.6 are nearly enough to
understand the periodic table of elements. The same calculations as in section 4.6 gives
us the solutions for a single electron seeing a nuclear charge of +Ze instead of +e, where
Z is the number of protons in the nucleus. You just have to replace e2 ! Ze2 in all our
solutions. Ignoring electron-electron interactions in a first step, you can then find all the
eigenstates for heavier atoms using techniques as for Eq. (5.2) and the Pauli principle. The
latter forces us to fill two electrons only, into each Hydrogen-like state. The primary way
that electron-electron interactions show up, is through the concept of screening: The two
electrons in e.g. the | 1s i state of Lithium are much closer to the nucleus than the valence
electron inserted into | 2s i. As a result they screen the nucleus for the valence electron, which
thus sees an “e↵ective nuclear charge” Ze↵ ⇡ 1 instead of Z = 3. This explains the periodic
recurrences of e.g. ionisation energies. For (much) more details we refer to PHY402 “Atomic
and molecular physics”, where you will discuss multi-electron atoms.

For Bosons, there is no problem in occupying the same quantum state. This allows for example a

Example 44, Bose-Einstein condensate: Consider N non-interacting Bosonic atoms
in a 1D harmonic oscillator potential as shown below. Using the same statement as for (5.2)
for those N atoms we find just one TISE such as Eq. (2.42) in section 2.3 for each of those
atoms. The absolute ground-state thus clearly is  (x1, x2, · · ·xN ) = �0(x1)�0(x2) · · ·�0(xN ),
with SHO ground-state �0(x) from Eq. (2.64).

left: Thus all N atoms are in the same
single particle state �0. The resultant many-
particle state  describes what is called
a Bose-Einstein condensate. In contrast
Fermionic atoms would fill oscillator quantum
states one by one, see on the left. See more on
this in PHY435 “quantum many body physics
of degenerate gases”.

The two di↵erent variants of many body wavefunctions give rise to fascinating and useful behaviour,
that you can explore further in courses on super-conductivity (involving a Bose-Einstein condensate
of cooper pairs), superfluidity, neutron stars (stabilised by the Pauli principle applied to neutrons)
etc.
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5.2 Entanglement

Let us in this section consider quantum systems that have two distinguishable parts, labelled a and
b. We can then classify quantum-states into two classes.

Entangled and separable states We call a quantum state  (ra, rb) for two particles a
and b separable, if it can be written as a product of a state for particle a and particle b, e.g.

 (ra, rb) = �a(ra)�b(rb). (5.5)

We call it entangled, if it cannot be written as a product, e.g.

 (ra, rb) =
1p
2
[�a(ra)�b(rb)� �b(ra)�a(rb)] . (5.6)

• The easiest system in terms of which to think about entanglement, is a spin-1/2 object. In
terms of the triplet and singlet states in (4.125), which are entangled and which are separable?
(exercise).

• Entanglement is typically created through interactions of parts a and b.

Entangled states have some intriguing properties, which are best highlighted when considering the

EPR paradox Here EPR stands for Einstein-Podolsky-Rosen, who invented the paradox
(in a slightly di↵erent guise) to show that quantum mechanics cannot simultaneously be real,
local and complete.

left: A neutral pion ⇡0 can decay into an
electron e� and a positron e+. Since the
pion has spin s = 0, angular momentum con-
servation requires the two decay products to
be in the spin-singlet state of Eq. (4.125):
| i = (| "# i�| #" i)/

p
2. In this state, neither

electron nor proton has a well defined spin: A
measurement of either will give " or # with
50% probability, on both particles (see postu-
late III in section 3.6).

However after we measured e.g. " on the first particle, the state collapses according to
postulate IV in section 3.6. In this case this means that | i ! | "# i. Now we know the spin
of the first and the second particle, so a measurement on the first seems to have a↵ected the
second. This argument applies even if the second particle is e.g. light-years away, causing
EPR to conclude that something was “missing” in the quantum mechanical description of
reality. There could be some “hidden variables” that explain the apparent weirdness.

The so-called paradox was ultimately resolved by
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Bell’s theorem Bell considered a more complicated version of the above, where spin is not
measured only along the z-axis, but along two arbitrary axes in space a and b. Let’s stick
to just the z and x axes for the moment. Using our results Eq. (4.114), you can see that you
can write the entangled state from example 5.2 also as | i = (| i|!i� |!i| i)/

p
2. So

now if you randomly measure the spin along the x or z direction on one particle, the other
one will always point opposite regardless of choice of measurement. How did it even “know”
which axis we were going to measure?
Bell looked at the correlations P (a,b) = h |(a ·Ŝa)(b ·Ŝb)| i and showed that the quantum
mechanical result P (a,b) = �a·b cannot be ever explained by a local hidden variable theory,
who have to satisfy an inequality (Bell’s inequality) that is violated by the quantum mechan-
ical result. The quantum mechanical prediction was confirmed by many experiments since
(first by Alain Aspect 1982, using entangled photons).

• The proof of Bell’s theorem is not that hard, and can be found in Gri�th, chapter 12. We
refer to that also for more details on what is meant by locality, and by “hidden variable
theories”.

• Ultimately this is just another instance, where we have to abandon concepts from our ev-
eryday intuition in quantum mechanics. In quantum mechanics, it is simply impossible to
individually, locally, describe two objects after they have interacted. In the example above,
the interaction happens during the pion decay. Instead we have to describe them with a (usu-
ally entangled) two-body wavefunction such as (5.2), that ultimately is a highly non-local
object once the two particles have moved far apart from each other.

• The experimental demonstration of quantum mechanical violations of Bell’s inequality es-
sentially solve the dispute between “realist” and “orthodox” interpretations mentioned in
section 1.4 (and discussed much more in Gri�th), in favor of the orthodox interpretation.
Ascribing the particle(s) a pre-existing state prior to measurements would again require the
use of some hidden variables.

• Bell’s theorem also implies that entanglement is a stronger feature than classical correlations
(since classical correlations are exactly what would be used in a hidden variable theory).
It comes as no surprise then, that it is also the key resource based on which “quantum
computers” can do tasks that classical computers cannot do in reasonable time.

This section again was more intended as an appetiser, you would get the main course on entangle-
ment in courses on quantum information, quantum optics or entanglement itself.
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