
Week 10
PHY 303 Quantum Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2021

These notes are provided for the students of the class above only. There is no guarantee for cor-

rectness, please contact me if you spot a mistake.

The angular momentum eigenfunctions for the part describing the coordinates ✓ and ' in spherical
polar coordinates that we discussed so far are valid for an arbitrary spherically symmetric potential,
and besides the symmetry do not depend on the detailed form V (r) of that potential. What re-
mains to be done to find all 3D solutions of the TISE is to specify a radial potential V (r) and then
solve the radial Schrödinger equation (4.41).

4.6 Hydrogen atom

We shall do this now for the specific example of the Hydrogen atom. However, recall that our
entire discussion so far was for a single particle, while a Hydrogen atom consists of two particles,
the electron and the proton.

4.6.1 Separation of centre-of-mass motion [Bonus]

Luckily the problem simplifies to an e↵ective single particle problem. The reasoning is the same as
in classical mechanics, hence I shall not repeat it here fully, but instead refer you to the solution
of the Kepler planetary problem in classical mechanics PHY305. Note that the coulomb potential
and the gravitational potential have the exact same mathematical form, depending like 1/|r1 � r2|
on the separation between the two bodies. Let the proton be at rp with mass Mp and the electron
at re with mass me. We then define the centre of mass coordinate R, the relative coordinate r the
total mass M and the reduced mass µ though the relations:

M = me +Mp, µ =
meMp

me +Mp
,

R =
Mprp +mere

M
, r = re � rp. (4.70)

Note, that since Mp ⇡ 2000me, we have R ⇡ rp, M ⇡ Mp and µ ⇡ me.

The Hamiltonian (operator) for a proton and electron starts o↵ as (see e.g. (4.28))

Ĥ = � ~2
2mp

�rp �
~2
2me

�re �
e2

4⇡✏0

1

|re � rp|
. (4.71)
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It turns out that using the definitions (4.70), we can transform (4.71) into a Hamiltonian expressed
in terms of centre of mass and relative coordinates.

Ĥ = � ~2
2M

�R
| {z }

ĤCM

� ~2
2µ

�r �
e2

4⇡✏0

1

|r|| {z }
=Ĥrel

. (4.72)

As we had seen in section 4.1.3, for the two-particles, the wavefunction now becomes six-dimensional:
�p+e(R, r). As we had seen in section 4.1.1, whenever the Hamiltonian is a sum of Hamiltonians for
the two di↵erent coordinates, as is the case in (4.72), we can write the wavefunction as a product

�p+e(R, r) = �CM (R)�rel(r). (4.73)

and then do a separation of variables (see section 1.6.5) to split the TISE or TDSE following
from (4.72) into two separated ones for the centre-of-mass wavefunction �CM (R) and the relative
wavefunction �rel(r). The centre-of-mass wavefunction �CM (R) will just behave like that for a free
particle as discussed in section 2.4. The relative wavefunction is a↵ected by the Coulomb potential
as evident from (4.72) and thus will describe binding of the electron to the proton.

In the following we shall just assume that the proton is infinitely heavy, so that µ ! me, and we
work in the centre of mass frame (proton frame) of the atom. Then also the problem reduces to a
single particle problem, that of the electron, using only �rel(r). However bear in mind, that to be
precise, in all what follows we have to replace the mass of the electron me with the reduced mass
of the electron-proton system µ.

4.6.2 Hydrogen wavefunctions

left: Assuming an infinitely heavy proton as dis-
cussed in the previous section, we use spherical
polar coordinates to describe the location of the
electron, with the proton at the origin of the co-
ordinate system. The situation is sketched once
more on the left, but really this is just the same
diagram as that in section 4.2.

We know the electron mass is me = 9.109 ⇥ 10�31 kg, and the potential with which it interacts
with the proton is the Coulomb potential (4.32), where q = �e is the electron charge and Q = +1
that of the proton, while r is the distance between them. The spotential in this section is thu

V (r) = � e2

4⇡✏0

1

r
. (4.74)
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The situation clearly is spherically symmetric, so that that our discussion of section 4.2 so far fully
applies. This means that 2/3 of the work are already done. We can write the 3D wavefunction of
the electron as in Eq. (4.40):

�(r, ✓,') = R(r)Y (✓,'), (4.75)

and already know the possible forms of Y depending on the angular momentum of the electron.
What remains to be done is to solve the radial SE (4.41) to find R(r). It turns out we can make
the equation slightly simpler by the substitution u(r) = rR(r), then, also using Eq. (4.74)

� ~2
2me

d2

dr2
u(r) +


� e2

4⇡✏0

1

r
+

~2
2me

`(`+ 1)

r2

�

| {z }
⌘Ve↵(r)

u(r) = Eu(r). (4.76)

left: We are showing a drawing of the e↵ec-
tive potential Ve↵(r) for a few values of ` on the
left. Clearly, depending on the quantum number
` for the magnitude of angular momentum, see
Eq. (4.52), there is an increasing centrifugal po-
tential that pushes the electron outwards. This is
what you also encountered in the solution of the
Kepler problem of a planet orbiting the sun, only
there classically. In contrast to classical mechan-
ics, the centrifugal potential can only take certain
shapes since angular momentum is quantised.

As we had seen in the case of the finite potential well in section 2.2.2, the TISE here admits two
kinds of solutions, scattering states with E > 0 and bound states with E < 0. The former would
describe the situation where an electron comes in with a positive energy from infinity, makes a
fly-by past the proton (i.e. “scatters from it”) and then again escapes with conserved energy to
infinity. In contrast, of course, in the bound state the electron is “stuck to the proton”. We will
only consider bound states here, hence E < 0.

To solve (4.76), we proceed with the same recipe as in section 2.3.2. We first make the equation
dimensionless, to reduce the clutter in the notation. This is done by the redefinition ⇢ = r with
 =

p
�2mE/~ > 0 2 R and the shorthand ⇢0 = mee2

2⇡✏0~2 for which Gri�th gives a bit of a
motivation. We reach

d2u(⇢)

d⇢2
=


1� ⇢0

⇢
+

`(`+ 1)

⇢2

�
u(⇢). (4.77)

As in section 2.3.2 we try to first understand the asymptotic behaviour of u(⇢). For ⇢ ! 1, the

only term in [· · · ] that remains is the 1, so we have d2u(⇢)
d⇢2 = u(⇢), with the general solution u(⇢) =

Ae�⇢ + Be⇢. Clearly the second term would not be normalizable, so we settle with u(⇢) = Ae�⇢

for large ⇢ (and large ⇢ implies large r).

At small ⇢ ! 0, the centrifugal term ⇠ ` in [· · · ] dominates, hence d2u(⇢)
d⇢2 = `(`+1)

⇢2 u(⇢), with general

solution u(⇢) = C⇢`+1 + D⇢�` (check by back-substitution). But the second term blows up at
⇢ ! 0 so we set D = 0.
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Most of the arguments above are not super rigorous (e.g. not valid for all values of `), but they
only serve to motivate one further re-definition of the function that we are solving for:

u(⇢) = ⇢`+1e�⇢v(⇢). (4.78)

(we could have done even without any of the arguments above). Inserting (4.78) into (4.77) we
reach

⇢
d2v(⇢)

d⇢2
+ 2(`+ 1� ⇢)

dv(⇢)

d⇢
+ [⇢0 � 2(`+ 1)]v(⇢) = 0. (4.79)

Finally, again as in section 2.3.2 we take a power series Ansatz for v(⇢)

v(⇢) =
1X

j=0

aj⇢
j , (4.80)

plug that into (4.79) and obtain a recursion relation for the coe�cients:

aj+1 =
2(j + `+ 1)� ⇢0
(j + 1)(j + 2`+ 2)

aj . (4.81)

Of course we could have done the power series Ansatz for u(⇢) directly and plugged that one into
(4.77), but it turns out that that would be much more messy (see Gri�th’s footnote on page 136).
We can again see that if the series would not terminate, the resultant function u(⇢) would not be
normalisable according to Eq. (4.49) (see technical arguments in Gri�th). The termination must
happen as in section 2.3.2, we require a maximum power j, let’s say jmax, for which the numerator
of the fraction in (4.81) vanishes, such that ajmax+1 and all subsequent coe�cients vanish. Hence

2(jmax + `+ 1)� ⇢0 = 0 (4.82)

Let us define a new integer

n = jmax + `+ 1 (4.83)

such that (4.84) becomes 2n = ⇢0 and using the definition of ⇢0, which contains the energy, we can
finally write this termination condition as:

E = En = � m

2~2

✓
e2

4⇡✏0

◆2
1

n2
. (4.84)

Since n is an integer, we thus found a quantized energy yet again. Also note, that since jmax � 0 we
automatically have n � `+1 or the other way round `  n�1. It remains to find the wavefunction,
for which we have to solve the recursion relation (4.81) for finding v(⇢). Due to the termination
condition (4.84) and (4.80) we already know that v(⇢) is a polynomial of degree jmax = n� `� 1.

Mathematicians finally tell us that it is v(⇢) = L2`+1
n�`�1(2⇢) in terms of the

Associated Laguerre polynomial: which is derived via

Lp
q�p)(x) = (�1)p

✓
d

dx

◆p

Lq(x) (4.85)

from the q’th Laguerre polynomial:

Lq(x) = ex
✓

d

dx

◆q

(e�xxq). (4.86)
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For our later drawings of Hydrogen wavefunctions, we need the first few associated Laguerre poly-
nomials:

L0
0 = 1, L0

1 = �x+ 1, L0
2 = x2 � 4x+ 2, L0

1 = 1, L1
1 = 1� 2x+ 4, L1

2 = 3x2 � 18x+ 18.
(4.87)

More of them can be found in Gri�th or the internet.

Due to the form v(⇢) = L2`+1
n�`�1(2⇢), we see that the wavefunction depends on n and `, as we would

have expected since the di↵erential equation (4.76) contains E (related to n through (4.84)) and
separately also `. Undoing all our substitutions further above, adding the angular momentum part,
and inserting quantum numbers, we have found the wavefunction

�n`m(r, ✓,') = Rn`(r)Y
m
` (✓,'),

Rn`(r) =
1

r
⇢`+1e�⇢vn`(⇢), (4.88)

with dimensionless coordinate ⇢ = r/(a0n), where we used the

Bohr radius

a0 =
4⇡✏0~2
mee2

= 5.29⇥ 10�11m. (4.89)

We have purposefully held of the red boxes until now, to collect the complete

Electronic states and energies of the Hydrogen atom The energy of the electron in
the Hydrogen atom is

En = � m

2~2

✓
mee2

8✏20h
2

◆

| {z }
=R⇤

1

n2
. (4.90)

where the Rydberg constant is R⇤ = 13.6 eV.
The corresponding complete and normalised wavefunctions are

�n`m(r, ✓,') = Rn`(r)Y
m
` (✓,'), (4.91)

Rn`(r) =

s✓
2

na0

◆3 (n� `� 1)!

2n(n+ `)!]
e�r/(na0)

✓
2r

na0

◆`

L2`+1
n�`�1

✓
2r

na0

◆
, (4.92)

with spherical harmonics Y m
` (✓,') given in (4.51).

• The hydrogen states depend on three quantum-numbers n, ` and m.

– The principal quantum number12 n is the only one that a↵ects the energy of the electron,
it describes the quantisation of energy. Its range is n = 1, 2, · · · the positive integers.

12Not principlE quantum number
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There is no maximal value. We can infer this range from the definition (4.83), with
jmax, ` � 0 (see below). This quantum number a↵ects the radial part Rn`(r) of the
wavefunction in (4.91), but not the angular one Y m

` (✓,').

– The orbital quantum number ` describes the quantisation of the magnitude of (orbital)
angular momentum, as seen in (4.52). It is the only quantum number that a↵ects
both parts of the wavefunction, the radial one and the angular one. It can take the
values 0  `  n � 1. That ` is a positive integer we had seen in section 4.3, while the
requirement `  n� 1 again follows from (4.83).

– The magnetic quantum numberm describes the quantisation of the z-component of (orbital)
angular momentum, as seen in (4.53). It is an integer that can take the range �`  m 
+`, as we had seen in section 4.3.

• For many, the Hydrogen atom will remain the most complex quantum problem for which
you will see a complete analytical solution. That solution however is extremely important.
With some slight modifications for larger atoms (PHY 402) it underpins our understanding
of the periodic table, the existence of spectral lines (PHY 106) and atom-light interaction.
With the latter, we can engineer many important tools for modern quantum experiments and
technologies.

• A historic artefact that has remained useful due to avoiding cluttering notation with too
many numbers is the spectroscopic notation, where we replace the orbital quantum number
with a letter code ` = 0, 1, 2, 3, 4, · · · ! s, p, d, f, g, · · · (at · · · it continues alphabetically).
We can then write e.g. the stat with quantum numbers n = 2 and ` = 1 as | 2p i and so forth.
In PHY402 you shall see an extension of this notation that includes also the total angular
momentum including spin, and its orientation.

Due to this widespread importance, and the lack of examples in section 4.2 let’s see a few more
examples and drawings here:

left: First let’s sketch the Hydrogen energies as we did
earlier inside of a drawing of the Coulomb potential V (r)
((4.74)). Energy levels are not equidistant, with energy
gaps decreasing between adjacent states of higher principal
quantum number n. The classical turning point where E =
V (r) is moving further and further out. Mathematically,
there is an infinite number of states as we approach E ! 0
from below. Practically, at some point these electrons are so
weakly bound that such states would not be very relevant,
except in outer space or very well shielded experiments.
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Example 34, Lower quantum states of Hydrogen: Now let’s revisit drawings of
Hydrogen wavefunctions that we already saw in PHY106, but where now we know the
(almost) complete derivation:

left: The simplest but also most important is
the Hydrogen ground state | 1s i (so n = 1, which
forces ` = 0 and hence m = 0). We draw the radial
wavefunction

R10(r) =
2

a3/20

e�r/a0 (4.93)

on the left, it drops exponentially, with length-scale
(=size of the atom), given by the Bohr radius a0.

In the right panel above, we draw an “equal probability surface” in 3D, e.g. the
sphere where |�(r)| = const. It is a sphere, because

Y00(✓,') =
1p
4⇡

(4.94)

is spherically symmetric (since it simply does not depend on any angle).
left: The first excited state n = 2 allows sev-
eral di↵erent angular momentum states. For | 2s i,
i.e. n = 2, ` = 0, m = 0, we again have a spherical
symmetry using (4.94), but now we have one node
in the radial wavefunction, see Eq. (4.87):

R20(r) =
1

2
p
6a3/20

✓
1� r

2a0

◆
e�r/(2a0) (4.95)

The drawing is supposed to show a sphere, out of which we have cut out a quadrant
to look inside and show the sign.

left: When angular momentum is nonzero ` =
1, it can point in three di↵erent directions m =
+1, 0,�1. Independent of that, the radial wave
function looks as on the left,

R21(r) =
1

2
p
6a3/20

r

a0
e�r/(2a0) (4.96)

with reduced probability density at the proton.
This is a consequence of the centrifugal barrier in
Ve↵, see Eq. (4.41).

The angular wavefunctions are now no longer spherically symmetric, with

Y10(✓,') =

r
3

4⇡
cos ✓, Y1±1(✓,') = ⌥

r
3

8⇡
sin ✓e±i'. (4.97)
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Example 35, Rydberg states of Hydrogen: We had seen many examples before, where
low energy quantum states do not seem to have much in common with our classical physics
intuition, but high lying ones do, see e.g. example 15. This is also the case for the Hydrogen
atom, hence we take a look at its Rydberg states, which means large n (say n > 10).

left: Due to the structure of the La-
guerre polynomials, the radial wave- func-
tion of Hydrogen has j = n�` = 1 nodes.
For n = 40 and ` = 0 the gives a highly os-
cillatory probability density as shown on
the left.

If we smoothen the fast oscillations, we obtain a probability density that resembles
that of a classical electron in a Coulomb potential ⇢cl(r), shown in violet. As usual,
the quantum results reaches farther than the classical turning point rctp, there showing
exponential decay.
In contrast, for the maximum possible ` = 39, there are no nodes and the radial wavefunction
appears almost Gaussian, centered on large radii.

left: If we look into the 3D probabil-
ity density we see why: This forms a
torus/donut as shown left. Together
with the radial phase e39i' this im-
plies the electron making an almost
“circular orbit” around the proton,
like a planet.

The angular momentum implied by this state is also shown in green. We see that the motion
is almost constrained to a the x� y plane, as it would be classically, also revisit example 33.

4.6.3 Meaning of the z-axis

Now that we are done with the Hydrogen atom, we should wonder about what is special about the
z-axis13. The answer is of course “nothing”, the Coulomb potential (4.74) is perfectly symmetric.
However changing the z-axis does change the meaning of all our Hydrogen eigenstates states �n`m(r)
as you can see from e.g. the drawing in example 35: For the state shown, if we chose a di↵erent
z-axis, we get a completely di↵erent torus orientation. How can this be reconciled?

Degeneracy of angular momentum states. We see in Eq. (4.90) that energy only depends
on n. We see in (4.52) that the magnitude of angular momentum only depends on `. Together
this means that all states with di↵erent azimuthal quantum numbers m are degenerate in both,
energy and magnitude of angular momentum. As written in the (newly added, please read now)
section 3.4.1, whenever that is the case we have some freedom to chose our eigen-basis within the

13In fact we should wonder that already at the end of week 9.
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degenerate subspace. For the case here, that means that any function

Ỹ m
` (✓,') =

X

m0

c(`m)
m0 Y m0

` (✓,'), (4.98)

will also be an eigenfunction of the Hamiltonian and the magnitude of angular momentum (but
no longer of the z-component of the angular momentum). With this construction, it it possible to
“rotate” the orbital shapes in example 34 into di↵erent “directions”, see video. This is done for
example in the real spherical harmonics used in chemistry. So also the mathematics reproduces the
features that the z-axis can be chosen arbitrarily.

Degeneracy of angular momentum states. In practice though, there typically is a smart choice
of z-axis and lots of bad choices. This is because (except in this course), we never consider the
Hydrogen atom in isolation. You are either concerned with its excitation by light or its interrogation
by light. Usually this means that calculations get easier, if you choose your z-axis along a physically
meaningful direction, e.g. that of the polarisation of the electric field in the light. Nevertheless, you
are free to chose any other axis, at the expense of “requiring more states” in your calculation.
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