
Phys 637, I-Semester 2022/23, Tutorial 8 solution

Stage 1 (Quantum optical master equation) Revisit the master equation (4.87).

(i) Describe all the physical ingredients for the scenario it describes.
Solution: There is a coherent coupling between levels | g ⟩ and | e ⟩ e.g. pro-
vided by a laser. The strength of that coupling is given by Ω, related to
the light intensity, while the frequency of the laser enters the detuning ∆
(which is the difference between transition frequency and laser frequency).
In addition there may be incoherent black-body radiation at the transition
frequency, which causes stimulated emission or can be absorbed and then
drives an incoherent excitation. Finally our treatment has incorporated
spontaneous decay as well.

(ii) What does each of the terms on the rhs of Eq. (4.89) do/describe? When
are they zero/non-zero, large/small?
Solution: (on demand only)

(iii) When atoms are in | g ⟩ they can change into | e ⟩ either using the Rabi
coupling from the Laser or via absorbing a photon from the black-body
radiation environment. What is the practical difference in how these pro-
cesses enter the Master equation (4.89)? What is the physical difference?
Solution: The mathematical difference is that the environmental effects
couple populations directly, e.g. in ρgg = · · · + γρee. This is akin to a
classical rate equation. In contrast the laser coupling is exclusively via the
coherences (cannot proceed without). As a result the former does not give
rise to oscillations (only relaxation), while the latter does. Physically, the
difference is the coherence of the light fields in question: The laser has a
well defined phase of oscillation at all times (if you revisit the PHY402
origin of Eq. (4.88), one assumes something like E(x, t) = E0 cos(ωt−kx)
for its electric field, which is a perfectly coherent monochromatic wave.
In contrast the thermal environment due to black-body photons has to be
imagined as an incoherent mixture of photons with lots of different phases
(see e.g. discussion in section 1.2. and references therein).

Stage 2 (Adiabatic elimination) Consider a two level atom as in example 37, Eq. (4.88),
but without the environment. We slightly redefine the energies of the states, so
that the Hamiltonian is

ĤS =
Ω

2
(| e ⟩⟨ g |+ | g ⟩⟨ e |)−∆| e ⟩⟨ e |. (1)

(i) Write down the Schrödinger equation for state amplitudes in |Ψ(t) ⟩ =
cg(t)| g ⟩+ ce(t)| e ⟩.
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Solution: We apply ĤS to |Ψ(t) ⟩ and then project the TDSE onto | g ⟩ and
| e ⟩ to reach

iℏ
∂

∂t
cg(t) =

Ω

2
ce(t), (2)

iℏ
∂

∂t
ce(t) =

Ω

2
cg(t)−∆ce(t). (3)

(4)

(ii) Let us assume that ∆ ≫ Ω. Then generalize (in fact it is simpler) the
technique of adiabatic elimination to a wavefunction, to get rid of ampli-
tudes ce and find an equation for cg only.
Solution: Due to ∆ ≫ Ω we can use the argument required for adiabatic
elimination that ∂

∂t
ce(t) is a very rapidly oscillating complex number and

thus averages to zero. Solving that averaged equation gives:

0 =
Ω

2
cg(t)−∆ce(t) ⇒

ce(t) =
Ω

2∆
cg(t). (5)

Inserting this into Eq. 2 gives:

iℏ
∂

∂t
cg(t) =

(
Ω

2∆

)2

︸ ︷︷ ︸
=α2

∆cg(t), (6)

The way the RHS looks now Ē = α2∆ represents an energy shift of the
ground-state. This is called light shift.

(iii) Now let us assume the laser intensity is spatially dependent Ω = Ω(x).
Discuss the meaning of the term you found above. What can we do with
it?
Solution: In that case we have Ē(x) = Ω(x)2

4
∆, which is a spatially

dependent potential that depends on the light intensity (through Ω(x)) and
light frequency (through ∆). It can be used for optical trapping.

Stage 3 (Steady states) Derive the results in example 37 for the steady state of an atom
under laser drive and spontaneous decay.
Solution: (on demand only)
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