
Phys 637, I-Semester 2022/23, Tutorial 7 solution

We suggest to do“Stages” in the order below, feel free to change that as per your interests.
Discuss first on your table within your team, then with neighboring tables.

Stage 1 (Lindblad Masterequation) Consider a three-level system with Hamiltonian

Ĥ = E0| 0 ⟩⟨ 0 |+ E1| 1 ⟩⟨ 1 |+ E2| 2 ⟩⟨ 2 |, (1)

and Lindblad operator L̂ =
√
κ| 2 ⟩⟨ 2 |.

(i) Derive the Lindblad Masterequation for that problem.
Solution: We have to evaluate the RHS of Eq. (4.25), and then take matrix
elements ⟨ k | · · · | k′ ⟩ on both sides to extract the evolution equation ρ̇kk′ =
· · · . Equivalently, for this simple 3×3 problem, we can just write everything
in matrix form:

ρ̂(t) =

ρ00(t) ρ01(t) ρ02(t)
ρ10(t) ρ11(t) ρ12(t)
ρ20(t) ρ21(t) ρ22(t)

 , Ĥ =

E0 0 0
0 E1 0
0 0 E2

 , L̂ =

0 0 0
0 0 0
0 0

√
κ

 .

(2)

Evaluating the RHS then amounts to just a bunch of matrix multiplications,
and we find (e.g. using mathematica):ρ̇00(t) ρ̇01(t) ρ̇02(t)

ρ̇10(t) ρ̇11(t) ρ̇12(t)
ρ̇20(t) ρ̇21(t) ρ̇22(t)


=

 0 −i (E0−E1)
ℏ ρ01(t) [−i[ (E0−E2)

ℏ − iκ
2
]ρ02(t)

i (E0−E1)
ℏ ρ10(t) 0 [−i[ (E1−E2)

ℏ − iκ
2
]ρ12(t)

i[ (E0−E2)
ℏ + iκ

2
]ρ20(t) [i (E1−E2)

ℏ + iκ
2
]ρ21(t) 0

 . (3)

(ii) Compare the expected time-evolution for initial states |ϕa ⟩ = (| 0 ⟩ +
| 1 ⟩)/

√
2 and |ϕb ⟩ = (| 0 ⟩ + | 2 ⟩)/

√
2. How do you interpret this? What

parameter(s) govern(s) the time-scale for decoherence? Which don’t?
Solution: Luckily (and atypically for a Lindblad equation), the time-
derivatives for all matrix elements in (3) de-couple, and the resultant equa-
tions can all easily be solved. We have ρkk(t) = ρkk(0) = const for all
populations and for (kℓ) = (02) or (12) we have

ρkℓ(t) = ρkℓ(0)e
−κ

2
te−i

(Ek−Eℓ)

ℏ t. (4)

while

ρ01(t) = ρ01(0)e
−i

(E0−E1)
ℏ t. (5)
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The initial wavefunctions given provide us with all initial density matrix
elements. For the case |ϕa ⟩, ρ01(0) = 1/2 is the only initially non-zero
coherence, it remains nonzero, with a complex exponential phase factor
oscillating at the energy difference between | 0 ⟩ and | 1 ⟩. In contrast, when
starting from |ϕb ⟩, the initially non-zero ρ02(0) = 1/2 is exponentially
damped on a time-scale τdecoh ∼ 1/κ.

Mathematically, this happens because the Lindblad operator did not contain
| 0 ⟩ or | 1 ⟩, so only superpositions involving | 2 ⟩ dephase. Physically, this
likely means that the system-environment interaction was state-dependent,
such that it only affects state 2, shifting its energies conditional on
the environment with a system operator Ŝ ∼ | 2 ⟩⟨ 2 |. We see that the
only parameter controlling the decoherence timescale is κ, while other
parameters in the problem (Ek) do not affect that.

(iii) From the discussion in week6, which type of system environment interac-
tion Hamiltonian is likely responsible for such a Lindblad operator and
what would the operator mean physically?
Solution: See above: Physically, this likely means that the system-
environment interaction was state-dependent, such that it only affects
state 2, shifting its energies conditional on the environment with a system
operator Ŝ ∼ | 2 ⟩⟨ 2 |.

(iv) Derive the Lindblad equation from the Born-Markov equation for the
case of Hermitian Ŝα by assuming zero memory time of the environment
Cα,β(τ) = γα,βδ(τ). Use the yellow box on page 76 of the lecture notes for
guidance.
Solution: See yellow box on page 76

Stage 2 (Quantum Brownian motion) Let us consider a simpler initial state for quantum

Brownian motion than in example 30 of the lecture: Ψ(x) = N e−
(x−x0)

2

2σ2 .

(i) Make a sketch of its Wigner function W (x, p) on the board. Based on
that discuss how W (x, p, t) should evolve in time for an oscillator without
an environment.
Solution: The initial Wignerfunction has a 2D Gaussian shape, indicating
the initial momentum and position uncertainty. It remains in that shape,
periodically encircling the origin as in the phase-space portrait of the
classical harmonic oscillator.
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(ii) Based on the description of the terms ∼ γ and ∼ D in the Master
equations (4.51) and (4.57), how would you expect each to affect that
evolution of the Wignerfunction, separately and together? At early times
and late times? Use intuition and educated guesses and board drawings,
recording your ideas.
Solution: (early times) We have learnt that the term ∼ γ describes
friction. Friction causes the oscillator to loose energy, hence its phase
space orbit should spiral into the origin. Initially, based on that we would
thus guess a behaviour as shown below:

The term ∼ D is responsible for the loss of spatial coherence, spatial
diffusion and momentum diffusion. The former leads to the loss of any
negative pieces in the Wigner function (which are not there for the initial
state above, but are there for the superposition of two Gaussians in
example 30). Spatial diffusion extends the support of W in the x direction.
Momentum diffusion will increase the momentum uncertainty, extending
the support of W in the p direction. Hence W diffuses in BOTh phase
space direction.

(late times) Diffusion cannot go on forever: If momentum and position
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diffusion were going on forever, they would lead to arbitrarily large
energies. That seems physically unreasonable (but note that a master
equation DOES NOT conserve energy, since it deals with the system part
of the complete universe only). Since in our QBM we are describing a
harmonic oscillator in contact with an environment at temperature T ,
we would expect it to reach thermal equilibrium (thermalize) with that
environment. At long times t → ∞, the Wigner function thus should
approach that of a thermal state [see Eq. (4.37)] of the central oscillator
and then cease to change.

Stage 3 (Perpetually positive density matrices)

(i) Show that if and only if

⟨Ψ |ρ̂S(t)|Ψ ⟩ ≥ 0, (6)

for all possible states |Ψ ⟩, then the populations pn of the density matrix
are ≥ 0 in any basis.
Solution: We show both directions of the equivalence separately. Let |Ψ ⟩ =∑

n cn|ϕn ⟩ be an arbitrary state expressed in the (Arbitrary) basis for which
we want to show all populations to be positive, and let’s target population
of state k. Then we know

0 ≤ ⟨Ψ |ρ̂S(t)|Ψ ⟩ =
∑
nm

c∗ncm⟨ϕn |ρ̂S(t)|ϕm ⟩
[Let’s choose cn = δnk]

= ρkk.

(7)

Thus ρkk must be positive. In the reverse direction, assume we know all
populations in all choices of basis are positive. We want to show (6) for
an arbitrary state |Ψ ⟩. Thus let us choose a basis that contains |Ψ ⟩ as
one of the basis vectors, say k = 0. Then ⟨Ψ |ρ̂S(t)|Ψ ⟩ = ρkk ≥ 0, as we
had to show.

(ii) Show that if the property Eq. (6) is true at time t, then evolution according
to Kraus operators as in Eq. (3.66) of the lecture preserves the property
at all later times t′ > t.
Solution: We know that for any state |Ψ ⟩

⟨Ψ |ρ̂S(0)|Ψ ⟩ ≥ 0, (8)
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We also know from Eq. (3.66) that

ρ̂(t)S =
∑
ij

Êij(t)ρ̂(0)SÊ
†
ij(t). (9)

Inserting into (8) gives

⟨Ψ |
∑
ij

Êij(t)ρ̂(0)SÊ
†
ij(t)|Ψ ⟩ =

∑
ij

⟨Ψ |Êij(t)︸ ︷︷ ︸
≡⟨ϕij |

ρ̂(0)S Ê
†
ij(t)|Ψ ⟩︸ ︷︷ ︸
≡|ϕij ⟩

. (10)

Defining Ê†
ij(t)|Ψ ⟩ = |ϕij ⟩ and using Eq. (8) for |Ψ ⟩ → |ϕij ⟩, we have

that (10) is a sum of positive numbers and thus positive.
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