
Phys 637, I-Semester 2022/23, Tutorial 6 14.10.2022

We suggest to do“Stages” in the order below, feel free to change that as per your interests.
Discuss first on your table within your team, then with neighboring tables.

Stage 1 (Born-Markov Masterequation)

(i) What do we try to achieve when deriving a Masterequation? How does it
help?
Solution: A masterequation aims to directly propagate the reduced density
matrix of the system, without the detour of first finding the complete
system+environment evolution operator Û(t). Since the system is typically
much more tractable (e.g. in terms of Hilbert-space basis), this is simpler
once it is achieved.

(ii) Discuss in your own words what is the content of the Born and Markov
approximations. Explain this once in terms of physics and then what is
the consequence in terms of mathematics.
Solution: (Born physics) In the Born approximation we assume the
interaction between system and environment is weak and the environ-
ment very large. The system thus can only have a minor effect on the
environment. (Born mathematics) This allows us to replace the time
evolving combined density matrix ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E(0), which is a twofold
massive simplification: The environment no longer time evolves, and the
state remains (approximately) separable. (Markov physics) We assume
environment correlations C(τ) are only nonzero for short delays τ , which
are much shorter that typical timescales on which the system density
matrix ρ̂S(t) evolves (=changes). This can be interpreted as the memory
quickly forgetting any small effect the environment had on it earlier.
(Markov math) Firstly we can set ρ̂S(t

′) ≈ ρ̂S(t) in the integration over
the delays, since ρ̂S(t) will be approximately constant (it evolves on much
longer timescales than when C(τ) drops to zero). For a similar reason we
can extend the integration domain of delays from t to ∞, since at large
delays, C(τ) = 0 anyway so we are not changing the physics but making
the math easier.

(iii) Through which quantity does the environment enter the effective system
evolution in the master-equation? Which information from the environ-
ment enters this quantity?
Solution: All information about the environment that enters the evolution
of the reduced density matrix of the system is encapsulated in the envi-
ronment self correlation function(s). The correlation functions however
depend on almost all information available on the environment: The
environmental part of the coupling Hamiltonian Ê, eigenfrequencies of the
environment (due to the interaction picture evolution Ê(I), and the initial
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(permanent) state of the environment.)

Stage 2 (Lindblad Master equation)

(i) What is good about a Lindblad masterequation and not so good about
its precursor, the Born-Markov masterequation?
Solution: The Lindblad masterequation guarantees that the time-evolving
reduced system density matrix remains completely positive, such that all
populations ρaa ≥ 0 for any state | a ⟩. This is NOT guaranteed for the
Born-Markov masterequation, as an artefact of the approximations we
made to reach it.

(ii) What is meant by a CPTP map?
Solution: A CPTP map is a matp L that is “completely positive and
trace preserving”. Hence we we evolve the density matrix with it
ρ̂(t+ dt) = ρ̂(t) + dtL[ρ̂(t)], if the density matrix at time t was completely
positive (see (i)) and properly normalized Tr[ρ̂(t)] = 1, both will be true
at time t + dt as well. Note that the Masterequation (whether Lindblad
or Born-Markov) is linear in ρ̂, which means that you manually have
to ensure that you start with Tr[ρ̂(t)] = 1, because any other messed up
normalisation will also be preserved.

(iii) Describe the ingredients of a Lindblad equation and methods for its
solution.
Solution: We need the system Hamiltonian, possibly with a Lambshift Ĥ ′

and all Lindblad operators of the problem L̂µ. The latter are typically
defined such that they directly contain the coefficients κmu in (4.25) of
the lecture. Otherwise we would need the κµ as well. After writing down
the Lindblad equation explicitly in terms of matrix elements of the density
matrix ρ̇nm = · · · , it turns in a system of coupled differential equations of
first order in time, and can be solved with standard methods that you know
for these. I.e. writing it as a matrix DE an using matrix exponentials,
or decoupling via tricky addition or subtraction of component equations,
or series expansions. Most frequently though, you would just numerically
solve them on a computer.

Stage 3 (Dephasing) Take a good look at example 27 (Lindblad equation for dephasing)
of the lecture. Solution: Please do and ask questions if unclear.
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