
Phys 637, II-Semester 2020/21, Tutorial 4 solution

We suggest to do“Stages” in the order below, feel free to change that as per your interests.
Discuss first on your table within your team, then with neighboring tables.

Stage 1 (Pointer states)

(i) Consider the following System-Apparatus-Environment Hamiltonian, for
a system spin, apparatus harmonic oscillator and multiple environment
oscillators:

HS = ∆Eσ̂z, HA = ℏωâ†â, HE =
∑
n

ℏωnb̂
†
nb̂n,

HSA = κSAσ̂y︸ ︷︷ ︸
=Ŝ

(â+ â†), HAE = (â+ â†)︸ ︷︷ ︸
=Â

⊗
∑
n

ηn(b̂
†
n + b̂n). (1)

Find the pointer states (of the system, with respect to the apparatus), and
the pointer states (of the apparatus, with respect to the environment).
Solution: The pointer states of the system, with respect to the apparatus
are the eigenstates of the S part of HSA, which is Ŝ as shown above.
These are | ±y ⟩ = (| ↑ ⟩ ± i| ↓ ⟩)/

√
2. The pointer states of the apparatus,

with respect to the environment are the eigenstates of the A part of HAE ,
which is Â as shown above. We have reshuffled the sum, but we are free
to do so. We know that Â ∼ q̂ where q̂ is the position of the apparatus
oscillator, hence the pointer states of the apparatus, with respect to the
environment are position “eigenstates” | q ⟩.

Stage 2 (Wigner function)

(i) Revise the properties and purpose of the Wigner function that we stated
in the lecture.

(ii) Based on that, without a calculation, discuss qualitatively how you think
the Wigner function of the following quantum states should look like, or
at least guest SOME of its features, and make a drawing (isocontours) of
them in the x− p phase-space:

• (a) The n = 5 eigenstate of the 1D quantum harmonic oscillator ϕ5(x).

• (b) A plane wave eikx.

• (c) An Airy function Ai(x).

Solution: We can get guidance by three features: The support (areas of
nonvanishing function) in the x − p plane will be mainly where we expect
a classical state with the same features as the quantum state to sit. (a) In
the case of the oscillator eigenstate this means at energy E = ℏω(5+1/2).
We know from classical mechanics that this is an ellipse in phase space,
as drawn in Fig. 1. But we also require that P (x) =

∫
dpW (x, p) is the
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position probability distribution and P (p) =
∫
dxW (x, p) the momentum

one. In oscillator eigenstate n = 5, both of these have many nodes, due to
the Hermite polynomial. The drawing would not satisfy this requirement,
so there must be lots of additional features, hence we wrote the red ?. (b) for
the plane wave we know that p = ℏk exactly and x is completely unknown.
So we suspect a straight line in phase space as drawn. This time there
is not problem with getting the right P (x) and P (p), hence no question
marks. (c) We know the Airy function is the eigenfunction of the particle
in a linear potential V (x) = Fx, i.e. with a constant force. Classically,
the trajectory of such a particle is x(t) = x0 +

1
2
F
m
t2 and p(t) = p0 + Ft.

We can use the latter to eliminate t and find x(p) = x0 +
1
2
(p−p0)2

m
, hence

x as a function of p is a parabola. For some arbitrary choice of x0 and p0,
this is drawn in Fig. 1. Again, we have the issue that the density in an
Airy function P (x) = |Ai(x)|2 is highly oscillatory, so some additional ?
features have to be there.

Figure 1: Reasonable guesses for the main support of Wignerfunctions with lettering as
above.

(iii) (later at home) Corroborate your thoughts from the tutorial with actual
calculations, or numerical plots.
Solution: We can just use the definition of the Wigner function for some
examples to produce the plots shown in Fig. 2. We see that we have guessed
the dominant features correctly, and the numerics now have provided the
“complicated extra features”, which would be harder to guess. Having plot-
ted them, looking at the signs, and doing the integration over x and p from
the figure “in our head”, we can however see that these features can in
principle provide us with the required node structure of e.g. position space
densities.
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Figure 2: Actual Wigner functions from calculations, left to right in the same ordering
as Fig. 1, using Tutorial4 plot wignerfunction.m, showing agreement with our guess
on the main features plus some harder to guess quantum interference features. For the
Airy function we had to multiply an additional windowfunction for a cleanish Fourier
transform.

Stage 3 (Schmidt-decomposition)

(i) Using the Schmidt-decomposition (3.48), obtain expressions for the re-
duced density matrices for system A and system B. Show that these
reduced density matrices are Hermitian and find their eigenvalues and
eigenvectors. With that, show that the Schmidt-decomposition for any
state |Ψ ⟩ involving systems AB can be found by finding the two reduced
density matrices in any basis and diagonalising them.
Solution: The Schmidt-decomposition of an arbitrary pure state |Ψ⟩ of the
composite system AB is of the form:

|Ψ⟩ =
∑
n

λn|an⟩|bn⟩, (2)

where {|an⟩} [{|bn⟩}] are orthonormal basis vectors of the Hilbert space
HA[HB]. The total density matrix is thus:

ρ = |Ψ⟩⟨Ψ| =
∑
mn

λmλ
∗
n|am⟩|bm⟩⟨an|⟨bn|

=
∑
mn

λmλn|am⟩⟨an| ⊗ |bm⟩⟨bn| (3)

Since | bn ⟩ are a basis, we can use it to perform the trace over B. The
reduced density matrix for system A is therefore:

ρA = TrB{ρ} =
∑
p

⟨bp|

(∑
mn

λmλn|am⟩⟨an| ⊗ |bm⟩⟨bn|

)
|bp⟩

=
∑
p

∑
mn

λmλn|am⟩⟨an| ⊗ ⟨bp|bm⟩︸ ︷︷ ︸
δpm

⟨bn|bp⟩︸ ︷︷ ︸
δnp

ρA =
∑
p

λ2
p|ap⟩⟨ap|. (4)
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Similarly,

ρB =
∑
q

λ2
q|bq⟩⟨bq|. (5)

Since λ2
p = λ∗

p
2, it is easily evident that ρ†A = ρB and so ρA is Hermitian.

Similarly, ρB is also Hermitian. Now, from Eq.(4), we see that ρA is a
diagonal matrix. So the coefficients λ2

p are its eigenvalues and the cor-
responding eigenvectors are {|ap⟩}. Similarly, λ2

q are the eigenvalues and
{|bq⟩} are the corresponding eigenvectors of ρB. Hence, from Eq.(2), we
see that the Schmidt decomposition of any |Ψ⟩ can be found in the following
manner:

|Ψ⟩ =
∑
n

√
λ2
n|an⟩|bn⟩. (6)

(ii) Does the two qubit state |Ψ ⟩ = (| 00 ⟩ + | 01 ⟩ + | 10 ⟩ + | 11 ⟩)/2 take the
form of Schmidt decomposition? Why/why not? If not, which is a Schmidt
decomposition?
Solution: No, the above qubit state is not in a Schmidt decomposition form.
If we wanted to push it into that form, we would need to use basis vectors
| 0 ⟩ and | 1 ⟩ for each qubit more than once, and that is not allowed in
the Schmidt form. To find out the Schmidt decomposition of this state, we

use the prescription that we proved in (i). Here, assuming |0⟩ =
(
1
0

)
and

|1⟩ =
(
0
1

)
, we get,

ρA =

(
1
2

1
2

1
2

1
2

)
and ρB =

(
1
2

1
2

1
2

1
2

)
.

The eigenvalues of ρA/B are 0, 1 and the corresponding eigenvectors are(
1√
2

− 1√
2

)
and

(
1√
2
1√
2

)
. Therefore, the Schmidt decomposition of |Ψ ⟩ is:

|Ψ ⟩ = 1× 1√
2
(| 0 ⟩+ | 1 ⟩)⊗ 1√

2
(| 0 ⟩+ | 1 ⟩) + 0× 1√

2
(| 0 ⟩ − | 1 ⟩)⊗ 1√

2
(| 0 ⟩ − | 1 ⟩)

=
1√
2
(| 0 ⟩+ | 1 ⟩)⊗ 1√

2
(| 0 ⟩+ | 1 ⟩). (7)

(which we also could have guessed directly from the input).

(iii) Now consider, as an example for (i), two spin-1/2 particles, labelled A and
B, in a (normalized) pure state,

|Ψ ⟩ = (| ↑↑ ⟩+ | ↓↑ ⟩+ | ↑↓ ⟩ − | ↓↓ ⟩)/2 (8)
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Obtain the Schmidt-decomposition by computing and diagonalizing the
two reduced density matrices.
Solution: Here,

ρA/B =
1

2
(|↑⟩⟨↑|+ |↓⟩⟨↓|) .

So they are already in the diagonal form with eigenvalues 1
2
, 1
2
and corre-

sponding eigenvectors |↑⟩ and |↓⟩. Therefore, the Schmidt decomposition
is:

|Ψ⟩ = 1√
2
(|↑↑⟩+ |↓↓⟩) . (9)
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