
Phys 637,I-Semester 2022/23,Tutorial 2 solution

Stage 1 (Density matrices)

(i) Motivation for the density matrix concept: Consider two spins, where the
first is the “system”, and try to devise a “reduced state of the system only”,
that has the property that it correctly describes all expectation values of
operators on the system. Let us take:

|Ψ ⟩ =
√

2

6
| ↑, ↑ ⟩+ 1√

6
| ↑, ↓ ⟩+ 1√

6
| ↓, ↑ ⟩+

√
2

6
| ↓, ↓ ⟩,

Ô1 = σ(1)
x , (1)

as a test case Hint: This should not work in general. In case you find a
construction where it does for this example, try it on another one.
Non-Solution: Will be completed later, ignore for Quiz.

(ii) For the following density matrices of a two-spin system, calculate
the reduced density matrix for the first spin only, and then its
purity and von-Neumann entropy. We used the basis ordering:
{| ↑, ↑ ⟩, | ↑, ↓ ⟩, | ↓, ↑ ⟩, | ↓, ↓ ⟩}. Discuss.

ρ̂1 =
1

4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 , ρ̂2 =
1

4


1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

 . (2)

Also write the state from (i) as a density matrix.
Solution: We already used the block-structure proposed in solution of as-
signment one, so we can find the reduced density matrices by tracing each
2 by 2 subblock. Then

ρ̂red,1 =
1

2

(
1 1
1 1

)
. (3)

Thus

ρ̂red,1ρ̂red,1 =
1

4

(
2 2
2 2

)
= ρ̂red,1, (4)

hence the trace is one and the purity one. For the von-Neumann entropy we
need to diagonalise the matrix, is has eigenvectors v = [1,+1]T/

√
2, with

eigenvalue +1 and v = [1,−1]T/
√
2, with eigenvalue 0. Thus using the

formula (3.12) of the lecture S(ρ̂red,1) = −
∑

k λklog2(λk) = −(1 log2 1 +
0 log2 0) = 0, we find the entropy vanishes. Both, P = 1 and S = 0, flag a
separable state.

A similar approach for the second matrix gives

ρ̂red,2 =
1

2

(
1 0
0 1

)
. (5)
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Thus

ρ̂red,2ρ̂red,2 =
1

4

(
1 0
0 1

)
(6)

Thus P = 1/2, and diagonalisation of ρ̂red,2 gives v = [1, 0]T , with
eigenvalue +1/2 and v = [0, 1]T , with eigenvalue +1/2, thus S(ρ̂red,1) =
−
∑

k λklog2(λk) = −(0.5 log2 0.5 + 0.5 log2 0.5) = − log2 0.5 = +1.

Here P < 1 and S > 0 both indicate an entangled state.

Finally, we write the state (1) as a density matrix in the form:

ρ̂ =
1
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 . (7)

(iii) Pick one of the density matrices in (ii), and change basis to left/right for
each spin.
Solution: Will be completed later, ignore for Quiz.

Stage 2
Consider an opto-mechanical quantum harmonic oscillator as shown in the
sketch above. Suppose an experiment succeeded to cool that oscillator to the
quantum ground-state and then suddenly (approximately instantaneously) dis-
place the minimum of the potential by the distance r as shown. This could
be done e.g. by generating a constant radiation pressure force due to light in
an optical cavity. This sudden shift creates a coherent state with parameter
α = r/(

√
2σ), where σ =

√
ℏ/(mω) is the zero point width. First write the

density matrix of the oscillator in that coherent state.
Now suppose due to technical noise, the displacement parameter r in the exper-
iment is itself normally distributed with variance (∆r)2 and mean r0. Propose
a density matrix in terms of oscillator eigenstates |n ⟩ that describes the exper-
imental situation after the shift, including this imperfection.

Solution: The coherent state is |α ⟩ = e−
|α|2
2

∑∞
n=0

αn
√
n!
|n ⟩, with α linked to r in

the question. We can write this as |α ⟩ =
∑∞

n=0 cn(r)|n ⟩ and with this short-
hand find ρ̂(r) = |α ⟩⟨α | =

∑
nm cn(r)c

∗
m(r)|n ⟩⟨m |, which is a density matrix
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for a pure state.
Once we include the technical noise, we have to change this into
ρ̂ =

∑
k p(rk)ρ̂(rk), where p(rk) is the probability for displacement

rk. The question suggested these are distributed according to p(r) =
1√

2π∆r
exp [−(r − r0)

2/(2∆r2)]. If we turn the sum into an integration, we can
also write

ρ̂ =

∫
dr p(r)

∑
nm

cn(r)c
∗
m(r)|n ⟩⟨m |. (8)

Stage 3 (Von-Neumann measurements) Consider a simple quantum optics experiment,
where you prepared a very short light pulse from a laser beam (that would be in a
coherent state wrt. photon number n) and then measure the number of photons
with a detector that has single photon resolution. Describe the measurement in
terms of the Von-Neumann scheme using steps →. Define appropriate detector
states to write this schematic. Also include the experimenter’s brain in the
scheme. How does this scheme differ from measurement postulate P3? Which
property of Schrödinger’s equation is crucial?
Solution: We can write a sequence

|Ψ ⟩ =
(∑

n

cn|n ⟩
)
⊗ | ar ⟩ ⊗ | br ⟩

measure→
∑
n

cn

(
|n ⟩ ⊗ | an ⟩

)
⊗ | br ⟩

see→
∑
n

cn

(
|n ⟩ ⊗ | an ⟩ ⊗ | bn ⟩

)
, (9)

where | an ⟩ means the apparatus has measured photon number n, and | bn ⟩ means
our brain has seen that the apparatus indicates that it has measured photon
number n. Crucially this differs from P3 by there being no collapse of any kind.
Instead of a collapse, everything goes into a massively entangled quantum state.
All this relies crucially on the linearity of the TDSE.

Stage 4 (Bonus) For the density matrix in Stage 2 including technical imperfections, find
a formula for the position uncertainty. Solution: See solution of assignment 3
later.
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