
Phys 637, I-Semester 2022/23, Assignment 6 solution

(1) Two level atom
First part: Thermal equilibrium with a radiation field: Assume a two-level atom
in a radiation field at temperature T as in example 37, section 4.7, described by the optical
Bloch equations (4.89). First, we do NOT assume any additional laser coupling (Ω = 0,
∆ = 0)
(1a) Find the steady state of the atom ρ̂(ss) at temperature T . Use the expression for the
thermal occupation of the resonant photon mode Nωeg(T ) from the lecture. [4 points]
Set the LHS and term in first square brackets on the RHS (containing Ω = 0, ∆ = 0) of
equation (4.89) to zero. Solve the resultant algebraic system of equations, together with
ρgg + ρee = 1, e.g. using mathematica, and find:

{ρgg = eβℏωρee, ρeg = 0, ρge = 0}

(1b) Determine the ratio of steady state atomic population in the excited and
ground state and discuss your result. [2 points]
Based on the above, the ratio is

ρee
ρgg

= e−βℏω.

As T → 0, ρee → 0, and ρee increases with T. The interpretation is, that the atom now
also is in thermal equilibrium with radiation field, at the same temperature T . Because of
this the ratio of occupation probabilities contains the Boltzmann factor e−βℏω = e−∆E/kBT ,
where ∆E is the energy difference between ground- and excited state.

Second part: Steady state in a laser drive:
(1c) Now move to zero temperature (T = 0, Nωeg(T ) = 0), but assume the presence of
coherent coupling Ω ̸= 0, ∆ ̸= 0). Find the steady state under these conditions. Compare
with the figures in example 37, section 4.7 of the lecture and discuss. [2 points]

Set the LHS of equation (4.89) to zero, on the RHS use that Nωeg(T = 0) = 0 to
significantly simplify. Solve the resultant algebraic system of equations, together with
ρgg + ρee = 1, e.g. using mathematica, and find:

ρgg =
Ω2 + γ2 + 4∆2

2Ω2 + γ2 + 4∆2
, ρge =

iΩγ + 2∆Ω

2Ω2 + γ2 + 4∆2
,

ρeg =
−iΩγ + 2∆Ω

2Ω2 + γ2 + 4∆2
, ρee =

Ω2

2Ω2 + γ2 + 4∆2
.

In the example we had used parameters ∆ = 0, Ω/(2π) = 1 and γ/(2π) = 4. Hence

ρee =
Ω2

2Ω2 + γ2 + 4∆2
=

(
1

5

)2

= 1/25,

which is consistent with the figure.
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(2) Wigner function evolution equation
Using the relation

W (x, p, t) =
1

2π

∫ ∞

−∞
dy eipy ρ(x− y

2
, x+

y

2
, t) (1)

it is possible to turn the evolution equation for the position-space representation of the
density matrix, ρ(x, x′, t) in Eq. (4.57) into one for the Wigner function W (x, p, t). Show
that the result is a Fokker-Planck type equation for the Wigner function

∂

∂t
W (x, p, t) =

[
− P

M

∂

∂x
+M(Ω2 + Ω̃2)x

∂

∂p
+ γ

∂

∂p
p

+D
∂2

∂p2
− f

∂

∂x

∂

∂p

]
W (x, p, t). (2)

The name “Fokker-Planck equation” comes from statistical mechanics where it describes
some evolution equations of probability distributions.
Hints: (i) You have to use integrations by parts together with ρ(x, x′) → 0 at x = ±∞ or
x′ = ±∞. (ii) Also note that yeipy = −i(∂/∂p)eipy. (iii) You may need ∂ρ

∂f
= 1

2
∂ρ
∂x

+ ∂ρ
∂y

and ∂ρ
∂g

= 1
2
∂ρ
∂x

− ∂ρ
∂y
, where f = x + y/2 and f = x − y/2. You can show this using the

usual transformation rules for multi-variate derivatives. [6 points]

Solution: We start from (1) and take the time derivative

∂

∂t
W (x, p, t) =

1

2π

∫ ∞

−∞
dy eipy

∂

∂t
ρ(x− y

2
, x+

y

2
, t), (3)

hence we require ∂
∂t
ρ(x− y

2
, x+ y

2
, t). Let us first recall Eq. (4.57) from the lecture notes:

∂

∂t
ρ(X,X ′, t) =

{
−i

2M

(
∂2

∂X ′2 − ∂2

∂X2

)
− i

2
M(Ω2 + Ω̃2)(X2 −X ′2)

+ γ(X −X ′)

(
∂

∂X ′ −
∂

∂X

)
−D(X −X ′)2+

iF (X −X ′)

(
∂

∂X ′ +
∂

∂X

)}
ρ(X,X ′, t), (4)

where we have changed a coefficient name to ”F” instead of ”f” to avoid the confusion
between the constant coefficient and the function defined in the hint. Since we need infor-
mation on ρ(x− y/2, x+ y/2, t), we define f = x+ y/2, g = x− y/2 as given in the hint.
The Eq. (4) can then be re-written as:

∂

∂t
ρ(g, f, t) =

{
−i

2M

(
∂2

∂f 2
− ∂2

∂g2

)
− i

2
M(Ω2 + Ω̃2)(g2 − f 2)

+ γ(g − f)

(
∂

∂f
− ∂

∂g

)
−D(g − f)2+

iF (g − f)

(
∂

∂f
+

∂

∂g

)}
ρ(g, f, t). (5)
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To convert partial derivatives into ones for x and y, we use the hint such that:

∂ρ

∂f
=

∂ρ

∂x

∂x

∂f
+

∂ρ

∂y

∂y

∂f
=

1

2

∂ρ

∂x
+

∂ρ

∂y
, (6)

∂ρ

∂g
=

∂ρ

∂x

∂x

∂g
+

∂ρ

∂y

∂y

∂g
=

1

2

∂ρ

∂x
− ∂ρ

∂y
. (7)

For this we also needed x = (f + g)/2 and y = f − g. Second derivatives then follow as

∂2ρ

∂f 2
=

1

4

∂2ρ

∂x2
+

∂2ρ

∂x∂y
+

∂2ρ

∂y2
(8)

∂2ρ

∂g2
=

1

4

∂2ρ

∂x2
− ∂2ρ

∂x∂y
+

∂2ρ

∂y2
, (9)

Using these in Eq. (5) yields:

∂

∂t
ρ(g, f, t) =

{
−i

M

(
∂2

∂x∂y

)
+ iM(Ω2 + Ω̃2)(xy)

+ γ(y)

(
2
∂

∂y

)
−Dy2 + iF (y)

(
∂

∂x

)}
ρ(g, f, t). (10)

Insertion into Eq. (3) gives

∂

∂t
W (x, p, t) =

1

2π

∫ ∞

−∞
dy eipy

{
−i

M

(
∂2

∂x∂y

)
+ iM(Ω2 + Ω̃2)(xy)

+ γ(y)

(
2
∂

∂y

)
−Dy2 + iF (y)

(
∂

∂x

)}
ρ(x− y

2
, x+

y

2
, t). (11)

We can now convert ∂
∂y

into p and y into ∂
∂p

using integration by parts, as per hints
provided in the question. We show here for example the integration by part for the first
term:

−i

M

∫ ∞

−∞
dy eipy

∂2

∂x∂y
ρ(x− y

2
, x+

y

2
, t) (12)

=
−i

M

{
eipy

∂

∂x
ρ(x− y

2
, x+

y

2
, t)

∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
dy

(
∂

∂y
eipy

)
∂

∂x
ρ(x− y

2
, x+

y

2
, t)

}

= −ip
∂

∂x

∫ ∞

−∞
dy eipy ρ(x− y

2
, x+

y

2
, t)︸ ︷︷ ︸

=W (x,p,t)

}

= − p

M

∂

∂x
W (x, p, t). (13)

After similar tricks for all other terms, we reach Eq. (2).
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(3) Quantum Brownian motion numerically
Now let us solve the equation we found in Q2 numerically.
(3a) Show that a derivative amounts to multiplication in Fourier space:

∂

∂x
f(x) =

1√
2π

∫ ∞

−∞
dk eikx

 (ik)︸︷︷︸
→XMDS

f̃(k)

 , (14)

where f̃(k) is the Fourier transform of f(x) and we use the symmetric 1√
2π

convention.
Then find the corresponding Fourier-space expressions for all other derivatives that occur
in the equation of part (3). Do NOT treat x and p as Fourier pair, instead each coordinate
get’s their own Fourier coordinate: x ↔ kx, p ↔ kp, this is because we want to evolve a
2D function W (x, p) and each dimension has be treated separately. [3 points]

Solution: We know that f(x) = 1√
2π

∫∞
−∞ dk eikxf̃(k). When we take the derivative ∂

∂x
f(x)

we can interchange the order of differentiation and integration to find:

∂

∂x
f(x) =

1√
2π

∫ ∞

−∞
dk

[
∂

∂x
eikx

]
f̃(k) =

1√
2π

∫ ∞

−∞
dk

[
(ik)eikx

]
f̃(k) (15)

(3b) Insert your derivatives at XXXX in Assignment6 program draft v4.xmds. For
each derivative operator you only write the part marked with ︸︷︷︸ in (15). XMDS au-

tomatically Fourier transforms the function the operator acts on, multiplies with e.g. ikx
and Fourier transforms back to insert into the equation of motion. As a first step, show
the solution agrees with Example 35 of the lecture if the same initial state and parame-
ters are chosen (all pre-set). Then play with initial state and parameters to explore the
functioning of all the terms (except the f term, which is numerically unstable) in the
equation of motion (together and separately). Make plots and discuss. Avoid too large
or too small values for parameters. Revisit your guesses in tutorial7, Stage2 and check
if they were correct. You may use Assignment6 wigner slideshow v1.m for visualizing
the evolution of the Wigner function. [5 points] See solution of tutorial 7
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