
Phys 637, I-Semester 2022/23, Assignment 5

Instructor: Sebastian Wüster
Due-date: 28.10.2022

(1) Let’s build us a quantum computer (theorist version): The register of a
quantum computer with 2 qubits can be described by the basis | 00 ⟩, | 01 ⟩, | 10 ⟩, | 11 ⟩.
Let’s call the first qubit A and the second B, i.e. | 00 ⟩ really is | 0A0B ⟩. It has been
shown that, for a quantum computer to do any arbitrary computation, is sufficient if it
can perform arbitrary single qubit operation1 and one of a set of universal two qubit gates
[see wikipedia] . One of the latter is the controlled-Z gate, with the truth-table:

| 00 ⟩ → | 00 ⟩,

| 01 ⟩ → | 01 ⟩,

| 10 ⟩ → | 10 ⟩,

| 11 ⟩ → −| 11 ⟩. (1)

Let our quantum computer have the Hamiltonian

Ĥ =
∑

n∈{A,B}

Ω(n)(t)

2
σ̂(n)
x − ∆(n)(t)

2
σ̂(n)
z + U(t)(σ̂(A)

z − 1)(σ̂(B)
z − 1), (2)

where we interpret each qubit as a pseudospin {| 0 ⟩ ↔ | ↓ ⟩, | 1 ⟩ ↔ | ↑ ⟩} so that we can use
a Pauli matrix notation, and (n) implies that an operator acts on qubit n ∈ {A,B} only.
The control parameters Ω(n)(t), ∆(n)(t) and U(t) are written explicitly time dependent,
so that a sequence of different operations can be performed.

A real quantum computer will also suffer from decoherence due to the external environ-
ment. Let that be described by Lindblad operators L̂µ=1 =

√
γAσ̂

(A)
z and L̂µ=2 =

√
γBσ̂

(B)
z ,

where the γn are decoherence rates.

(1a) Ignoring decoherence, design a sequence for control parameters (that means a spe-
cific form for the time dependent functions Ω(n)(t), ∆(n)(t) and U(t)) that implements the
following:

(i) Starting in the initialstate |Ψini ⟩ = | 00 ⟩, initialise qubit A in the register separately
into a non-trivial (exemplary picked) qubit state. Hence the final state for this part
should be |Ψ1 ⟩ = (cA0| 0 ⟩+ cA1| 1 ⟩)⊗ | 0 ⟩, with |cA0|2 + |cA1|2 = 1.

(ii) In the next step, initialise qubit B into another non-trivial qubit state. Hence the
final state for this part should be |Ψ2 ⟩ = (cA0| 0 ⟩ + cA1| 1 ⟩) ⊗ (cB0| 0 ⟩ + cB1| 1 ⟩)
with |cB0|2 + |cB1|2 = 1.

1That means it can map any input state |ΨA ⟩ = c0| 0A ⟩+ c1| 1A ⟩ with |c0|2+ |c1|2 = 1 into any other
state |Ψ′

A ⟩ = c′0| 0A ⟩+ c′1| 1A ⟩, similarly for B.
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(iii) On this register state, subsequently operate with the controlled-Z gate above.

Hints: Global phases do not matter. Revisit Rabi oscillations in two level systems. Maybe
read up on the concept of a “Bloch sphere”. For finite duration τ < T pulses of some
Rabi frequency such that

∫ T

0
dt′Ω(t′) = π/2, π, 2π we call this a (π/2, π, 2π)-pulse. One

knows that starting from e.g. state | 0 ⟩ and ∆ = 0, the outcomes of these pulses are
(| 0 ⟩ − i| 1 ⟩)/

√
2, −i| 1 ⟩ and −| 0 ⟩ respectively. Also consider separately which effect the

Ω and the ∆ terms have on a wavefuction .[5 points].

(1b) Work out the Lindblad Master equation (4.25) for this quantum computer. Describe
in words what the terms ∼ γA/B are doing and what you expect their physical effect to
be. [5 points].

(2) Bath correlation functions Consider an environment of Nnon-interacting har-
monic oscillators and numerically explore their bath-correlation functions.

(2a) Make a mathematica script that generates masses, frequencies and system-oscillator
coupling constants for N oscillators randomly from some specifically chosen distribution.
For example generate many random frequencies ωj, such that the probability for
ω < ωj < ω + ∆ω is given by the probability distribution function P (ω)∆ω (for some
choice of P (ω)). Plot histograms of those random numbers to check that your distribution
is implemented correctly. Then assemble the resultant correlation function C(τ) for zero
temperature and some meaningful nonzero temperature T . [6 pts]

(2b) Explore some different distribution shapes, means and widths and varying N .
Particular find out how the width (standard deviation) of the frequency distribution ∆ω,
the number of oscillators N and the temperature T affect the correlation function [4 pts].

Hints: Let us assume we have chosen some dimensionless units so that all parameters are
of order “one”. This still means we can let them vary between e.g. 0.01 and 100 or such.
Then, it might be ok to set all masses equal to one (why is that?). Check the documen-
tation of the mathematica commands Table, RandomVariate, NormalDistribution,
MixtureDistribution, ChiSquareDistribution, Histogram, PDF, Sum, ListPlot.
Initially start with N = 20, but in the end try to crank it up to as high as N = 2000.

(3) Simulating decoherence in a quantum computer The code
Assignment5 program draft v1.xmds is set up to numerically solve a Lindblad
equation, for the density matrix of question 1:

ρ̂(t) =
∑

ab;cd∈{0,1}

ρab;cd(t)| ab ⟩⟨ cd |. (3)

(3a) Implement your Lindblad equation from Q1b at XXX and your time sequence for
initialisation of the initial state and controlled-Z gate at ZZZ. Some manipulations on A
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and B could be done in parlallel, best do them sequentially. Also derive the energy as a
function of ρ̂ and implement that at YYYY. [4 points].

(3b) Check that your density matrix remains normalised properly and that
energy is conserved for constant parameters and no dephasing only, using
Assignment5 plot checks v1.m. Discuss what happens to these checks if parameters are
varying in time, or you add dephasing, and why. Hint: In the likely case that none of that
works on first attempt, use Assignment5 plot populations v1.m to check what your
control parameters and populations are doing, Assignment5 check hermiticity v1.m

to make sure the density matrix remains Hermitian, in case it doesn’t, use
Assignment5 check coherences v1.m to find the culprit. [2 points].

(3c) Check that your sequence correctly does steps (i) and (iii) from Q1a, using
Assignment5 check quantum computer v2.m. , if there is no decoherence (γn = 0) [2
points].

(3d) Check how this changes when decoherence is added. How large can γn be before
your quantum computer breaks down. What does that mean for the design principles of
quantum computers? [2 points].
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