
Phys 637, I-Semester 2022/23, Assignment 4 solution

(1) Derivation of Born-Markov Master equation:
Work out some of the missing intermediate steps of the derivation of the Born-Markov

Master equation given in the lecture:
(1a) Show that the total interaction picture density matrix obeys the Liouville-von Neu-
mann equation [(4.8) of lecture] [5 points].

d

dt
ρ̂(I)(t) = −i

[
Ĥ

(I)
int (t), ρ̂

(I)(t)
]
, (1)

Density operator in interaction picture (ℏ = 1)

ρ̂(I)(t) = eiĤ0tρ̂(t)e−iĤ0t

Taking time derivative,

d

dt
ρ̂(I)(t) = ieiĤ0t

[
Ĥ0, ρ̂(t)

]
e−iĤ0t + eiĤ0t

d

dt
ρ̂(t)e−iĤ0t

use von Neumann equation (3.2),

d

dt
ρ̂(I)(t) = ieiĤ0t[Ĥ0, ρ̂(t)]e

−iĤ0t − ieiĤ0t[Ĥ(t), ρ̂(t)]e−iĤ0t

putting, Ĥ(t) = Ĥ0 + Ĥint

d

dt
ρ̂(I)(t) = −ieiĤ0t[Ĥint(t), ρ̂(t)]e

−iĤ0t

= −ieiĤ0tĤint(t)ρ̂(t)e
−iĤ0t + ieiĤ0tĤint(t)ρ̂(t)e

−iĤ0t

= −ieiĤ0tĤint(t)e
−iĤ0teiĤ0tρ̂(t)e−iĤ0t+ieiĤ0tρ̂(t)e−iĤ0teiĤ0tĤint(t)e

−iĤ0t

= −iĤ(I)
int (t)ρ̂

(I)(t) + iρ̂(I)(t)Ĥ
(I)
int (t)

= −i
[
Ĥ

(I)
int (t), ρ̂

(I)(t)
]

(1b) Show that for interaction picture density matrices, we have ρ̂
(I)
S (t) = TrE

{
ρ̂(I)(t)

}
[above (4.10) of lecture]. [3 points]

we have,

TrE
{
ρ̂(I)(t)

}
= TrE

{
ei(Ĥs+ĤE)tρ̂(t)e−i(Ĥs+ĤE)t

}
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= eiĤstTrE
{
eiĤE tρ̂(t)e−iĤE t

}
e−iĤst (2)

= eiĤstTrE
{
ρ̂(t)

}
e−iĤst

= ρ̂
(I)
S (t)

Where in the second line we have used the invariance of the trace operation under cyclic
permutations of the arguments (see 1d for proof).

(1c) Assume the first term of Eq. (4.11) of the lecture is nonzero for a certain splitting
of Ĥ0 and Ĥint. By construction show how Ĥ0 and Ĥint can be re-arranged to make the
term vanish, without changing essential physics. [5 points]

The first term is,

−iTrE
[
Ĥ

(I)
int (t), ρ̂(0)

]
= −iTrE

[
Ĥ

(I)
int (t), ρ̂sρ̂E

]
= −iTrE

{
Ĥ

(I)
int (t)ρ̂sρ̂E − ρ̂sρ̂EĤ

(I)
int (t)

}
= −iTrE

{
Ĥ

(I)
int (t)ρ̂sρ̂E

}
+ iTrE

{
ρ̂sρ̂EĤ

(I)
int (t)

}
= −iTrE

{
Ĥ

(I)
int (t)ρ̂E

}
ρ̂s + iρ̂sTrE

{
ρ̂EĤ

(I)
int (t)

}
= −i

[
TrE

(
Ĥ

(I)
int (t)ρ̂E

)
, ρ̂s

]
(3)

Let,

Ĥ ′
int = Ĥint − TrE

{
Ĥintρ̂E

}
(4)

Ĥ ′
0 = Ĥ0 + TrE

{
Ĥintρ̂E

}
(5)

Such that the total Hamiltonian remains unchanged. Now we can write,

TrE
{
Ĥ

′(I)
int (t)ρ̂E

}
= TrE

{
eiĤ

′
0tĤ ′

inte
−iĤ′

0tρ̂E
}

putting H ′
0 = H ′

s +H ′
E and H ′

int from equation (4), we get

TrE
{
Ĥ

′(I)
int (t)ρ̂E

}
= TrE

{
eiĤ

′
0tĤinte

−iĤ′
0tρ̂E

}
− TrE

{
eiĤ

′
0t TrE

(
Ĥintρ̂E

)︸ ︷︷ ︸
ÔS

e−iĤ′
0tρ̂E

}
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= eiH
′
stTrE

{
eiĤ

′
E tĤinte

−iĤ′
E tρ̂E

}
e−iH′

st

−eiH′
st TrE

{
Ĥintρ̂E

}︸ ︷︷ ︸
ÔS

e−iH′
stTrE

{
eiĤ

′
E te−iĤ′

E tρ̂E
}

= eiH
′
stTrE

{
Ĥintρ̂E

}
e−iH′

st − eiH
′
stTrE

{
Ĥintρ̂E

}
e−iH′

st

= 0,

Now from equation (3), we have

−iTrE
[
Ĥ

′(I)
int (t), ρ̂(0)

]
= −i

[
TrE

{
Ĥ

′(I)
int (t)ρ̂E

}
, ρ̂s

]
= 0

In the second line, we have used the fact that ÔS is an operator that acts only on the
system and hence can be brought out of the TrE .

(1d) Find a counter-example demonstrating that in general the partial trace is not cyclic
[yellow box after 4.17 of lecture]. [2 points]

We calculate,

TrE{ŜαÊαρ̂} − TrE{ÊαŜαρ̂}

= TrE{ŜαÊαρ̂− ÊαŜαρ̂}

= TrE
[
ŜαÊα, ρ̂

]
But ŜαÊα do not commute with ρ̂ so,

TrE{ŜαÊαρ̂} ≠ TrE{ÊαŜαρ̂}

But it is not always true, partial trace can be cyclic, see the following example.

Let a bipartite Hilbert space HS ⊗HE , the partial trace is cyclic when the joint
operator acts as identity on the non traced subspaces, i.e.

TrE{ρ̂(ÎS ⊗ Ê)} = TrE{(ÎS ⊗ Ê)ρ̂}

where ρ̂ is any operator acting on the joint Hilbert space, Ê is the operator acting on
HE and ÎS is the identity operator acting on HS.

Proof:
To prove this we use an explicit representation of the ρ̂ operator(| sk ⟩ is a basis of HS

and | em ⟩ of HE)

ρ̂ =
∑
klmn

ρkl,mn| sk ⟩⟨ sl | ⊗ | em ⟩⟨ en |

3



so that,

TrE{ρ̂(ÎS ⊗ Ê)} =
∑
j

∑
klmn

ρkl,mn| sk ⟩⟨ sl |
{
⟨ ej | em ⟩⟨ en |Ê| ej ⟩

}
now introducing the identity ÎE =

∑
r | er ⟩⟨ er | right before Ê, we get

TrE{ρ̂(ÎS ⊗ Ê)} =
∑
rj

∑
klmn

ρkl,mn| sk ⟩⟨ sl |
{
⟨ ej | em ⟩⟨ en | er ⟩⟨ er |Ê| ej ⟩

}
on rearranging,

TrE{ρ̂(ÎS ⊗ Ê)} =
∑
r

⟨ er |(ÎS ⊗ Ê)
{ ∑

klmn

ρkl,mn| sk ⟩⟨ sl | ⊗ | em ⟩⟨ en |
}
| er ⟩

= TrE{(ÎS ⊗ Ê)ρ̂}

The same procedure can be used to prove that the partial trace in equation (2) is cyclic.

(2) Two-level atom in an optical cavity, Kraus operators: Consider an atom with
only two relevant electronic states | g ⟩ and | e ⟩, resonantly coupled to the mode of light
in an optical cavity as shown below.

We denote a quantum state with exactly n-photons in the cavity with |n ⟩, and handle
it like harmonic oscillator states. In the dipole and rotating wave approximation1 the
Hamiltonian defined what is called the “Jaynes-Cummings-model”:

Ĥ = ℏωâ†â+
∆E

2
σ̂z +

ℏκ
2
(âσ̂+ + â†σ̂−), (6)

where σ̂± = σx ± iσy. We want to treat the atom as system and single photon mode
as environment, even though a single photon mode usually is not complex enough to be
called “environment”.

(2a) Our complete basis is {| g, n ⟩, | e, n ⟩ for integer n. Show that in terms of this basis
the Hamiltonian decomposes into 2 by 2 blocks and find those blocks explicitly in matrix
form. If the initial state was | e ⟩ ⊗ | 0 ⟩, list all basis states that can become occupied in
time. [2 points]
Solution: The first two operators are diagonal in terms of spin (electronic state) and
oscillator state. The coupling operators act as âσ̂+| g, n ⟩ =

√
n| e, n− 1 ⟩, âσ̂+| e, n ⟩ = 0,

1You do not yet need to know what these are, you will see them in PHY402.
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â†σ̂−| g, n ⟩ = 0 and â†σ̂−| e, n ⟩ =
√
n+ 1| g, n+ 1 ⟩. We can interpret the first one as

“excite the atom by absorption of one photon” and the second as “de-excite the atom
through emission of one photon”. Now, âσ̂+|e, n− 1⟩ = 0, â†σ̂−|e, n− 1⟩ =

√
n|g, n⟩. So

it appears that further operation of the coupling terms on the states that we got on the
right hand side in the first applications, get us back to the original states.

From the form of these coupling terms, we infer that the Hilbertspace is divided into
subspaces with basis Bn = {| g, n+ 1 ⟩, | e, n ⟩}, for all n = 0, 1, 2, 3 · · · that do not couple
to any other subspace Bk k ̸= n. (Or you can explicitly find matrix elements between
blocks and show that those are zero, as we had done in earlier assignments). This means
that | g, 0 ⟩ does not couple to anything and is stationary.

The Hamiltonian for block n is a 2 by 2 matrix (basis ordering {| g, n+ 1 ⟩, | e, n ⟩} as
above):

Ĥn =

(
ℏω(n+ 1) + ∆E

2
ℏκ
2

√
n+ 1

ℏκ
2

√
n+ 1 ℏωn− ∆E

2

)
(7)

If we start in | e ⟩⊗| 0 ⟩ (which is in the n = 0 block), the only relevant states are | e ⟩⊗| 0 ⟩
and | g ⟩⊗ | 1 ⟩ (i.e. the atom is excited and there is no photon, and the atom is de-excited
and there is one photon).

(2b) Find the time evolution operator, and from that the evolution of the reduced density
matrix for the atom from the initial state | e ⟩ ⊗ | 0 ⟩. [4 points]
Solution: Since the Hamiltonian decomposes into blocks, so does the time evolution op-
erator (see earlier assignments). Each block is Ûn = exp [−iĤnt/ℏ], which we can find
through matrix exponentiation:

Ûn =

 e−iω(n+1
2 )t[cos (ωeff t/2)ωeff+i sin (ωeff t/2)(ω−∆E/ℏ)]

ωeff
−iκ

√
n+ 1

e−iω(n+1
2 )t sin (ωeff t/2)

ωeff

−iκ
√
n+ 1

e−iω(n+1
2 )t sin (ωeff t/2)

ωeff

e−iω(n+1
2 )t[cos (ωeff t/2)ωeff−i sin (ωeff t/2)(ω−∆E/ℏ)]

ωeff


(8)

with ωeff =
√

(ω −∆E/ℏ)2 + (n+ 1)κ2.
The initial state | e ⟩ ⊗ | 0 ⟩ belongs to the block n = 0, so we only have to worry about

a state of the form |Ψ(t) ⟩ = cg(t)| g, 1 ⟩+ ce(t)| e, 0 ⟩, with initial conditions c(t) = [0, 1]T .

Multiplying the matrix Û0 with this column vector we find:

|Ψ(t) ⟩ = −iκe
−iω

2
t sin (ωeff t/2)

ωeff

| g, 1 ⟩

+
e−iω

2
t [cos (ωeff t/2)ωeff − i sin (ωeff t/2)(ω −∆E/ℏ)]

ωeff

| e, 0 ⟩ (9)

The reduced density matrix from this sub-space will be

ρ̂S(t) = |cg(t)|2| g ⟩⟨ g |+ |ce(t)|2| e ⟩⟨ e |. (10)
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(2c) Now we want to use this example to understand Kraus operators. From (b) and the
initial state | e ⟩ ⊗ | 0 ⟩, find the Kraus operators of the problem. Then use those to find
the reduced density matrix of the atom and compare with your result from (b). [4 points]
Solution: The Kraus operators are defined through Eqn. (3.65) in the lecture:

Êij(t) =
√
pi⟨Ej |Û(t)|Ei ⟩ (11)

where i, j label the environmental basis. It depends on the initial state of the environment
through pi. Here we have pi = δi0, i.e. only i = 0 will contribute, which helps a lot. In
that case

Ê0j(t) = ⟨Ej |Û(t)|E0 ⟩. (12)

Due to the block structure of Û the problem simplifies even further, we know Û can only
couple | 0 ⟩ of the environment to | 1 ⟩, hence only j = 0 and j = 1 are relevant and given
by Ê00(t) = ⟨ 0 |Û0(t)| 0 ⟩, and Ê01(t) = ⟨ 1 |Û0(t)| 0 ⟩ in terms of Ûn from Eq. (8).

Let us write the matrix in (8) as

Û0 = Ugg| g, 1 ⟩⟨ g, 1 |+ Uge| g, 1 ⟩⟨ e, 0 |+ Ueg| e, 0 ⟩⟨ g, 1 |+ Uee| e, 0 ⟩⟨ e, 0 |. (13)

then Ê00(t) = Uee| e ⟩⟨ e |, and Ê01(t) = Uge| g ⟩⟨ e |.
Starting from ρ̂(0)S = | e ⟩⟨ e |, we can now use Eq. (3.66) of the lecture to find the

reduced density matrix for the system at time t:

ρ̂(t)S =
∑
ij

Êij(t)ρ̂(0)SÊ
†
ij(t)

here
= Uee| e ⟩⟨ e |

(
| e ⟩⟨ e |

)
U∗
ee| e ⟩⟨ e |+ Uge| g ⟩⟨ e |

(
| e ⟩⟨ e |

)
U∗
ge| e ⟩⟨ g |

= |Uee|2| e ⟩⟨ e |+ |Uge|2| g ⟩⟨ g |

=

[
cos2 (ωeff t/2) + sin2 (ωeff t/2)

(ω −∆E/ℏ)2

ω2
eff

]
| e ⟩⟨ e |+ (n+ 1)

∣∣∣∣κ sin (ωeff t/2)

ωeff

∣∣∣∣2 | g ⟩⟨ g |,
(14)

which is the same as what we had found in part (b).

(2d) (bonus) How do the Kraus operators change if we had a more complex initial state
| e ⟩ ⊗

∑
n cn|n ⟩, with multiple non-zero entries. What does this imply for the system

evolution?
Solution: We then get two copies of the Kraus operators found above from within each
block of the time evolution operator (or each photon number state with initially nonzero
occupation). Since the trigonometric functions in each have slightly different frequencies,
oscillations coming from different blocks will dephase, so the end result might be less
regularly periodic than that for the simple initial state above.
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(3) Numerical solution of Jaynes-Cummings model: We now want to verify
results from Q2 numerically, and also setup a tool that can solve the dynamics for more
general cases.

(3a) Using the expression

|ψ(t) ⟩ =
∑

a∈{g,e},n

can(t)| e, n ⟩, (15)

for the general time-dependent state expressed in the basis advocated in Q2, derive
equations of motion for the coefficients can(t) and implement those in the template
Assignment4 code draft v1.xmds. Run this without changing parameters and as usual
first check whether your equations conserve energy and normalisation of the state, using
Assignment4 plot checks v1.m. [5 points]
Solution: We insert Eq. (15) into iℏ| ψ̇(t) ⟩ = Ĥ|ψ(t) ⟩, apply all ladder and spin oper-
ators onto basis vectors and then project onto ⟨ g, k | and ⟨ e, k |, in the end we rename
k → n. Then we find:

ċen(t) = −i
(
+
∆E

2ℏ
+ ωn

)
cen − i

κ

2

√
n+ 1cg,n+1,

ċgn(t) = −i
(
−∆E

2ℏ
+ ωn

)
cgn − i

κ

2

√
nce,n−1. (16)

We ignore terms with negative subscripts (these are multiplied with zero anyway). Eq. (16)
conserves the norm ⟨ψ(t) |ψ(t) ⟩ =

∑
n(|cgn|2 + |cen|2) and energy

⟨Ĥ⟩ =
∑
n

[
∆E

2
(|cen|2 − |cgn|2) + ℏωn(|cen|2 + |cgn|2)

+ ℏκ
√
n+ 1 Re(c∗encg,n+1) + ℏκ

√
n Re(c∗gnce,n−1)

]
(17)

up to numerical precision as shown in the figure below.
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(3b) The code is set up to sample the reduced density matrix of the atom in two different
way, once directly from the time evolving state (you can rederive this for practice if
you like) and once via the Kraus operators. You still have to insert your result for the
Kraus operator from Q2 into the code at the indicated position. Finally use the script
Assignment4 compare reddm v1.m to compare both approaches (verifying your Kraus
operators from Q2). Discuss why the reduced DM evolves in the way it does. [5 points]
Solution: The complete comparison of the two density matrices is shown below, (K) mark
lines where it has been obtained via the Kraus operators. We used parameters (ℏ = 1)
with ∆E = 0.9(2π), κ = 0.1(2π), ω = (2π). In that case ωeff for the block n = 0 in

Eq. (10) is equal to ωeff =
√
[0.1(2π)]2 + [0.1(2π)]2 =

√
2κ and the maximal population

ever to get into the state | g, 1 ⟩ is |κ/ωeff|2 = 1/2. We just see detuned periodic Rabi
oscillations between the initial state | e, 0 ⟩ and (| e, 0 ⟩ + | g, 1 ⟩)/

√
2. When tracing over

the environment the latter gives us a 50-50 mixture for the atom’s electronic state, which
is what is shown in the figure.
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