Phys 637, I-Semester 2022/23, Assignment 3

Instructor: Sebastian Wüster Due-date: Lecture 15.9.2021

(1) Pointer states:

(1a) What are the pointer states <u>of the system</u> in the quantum brownian motion Hamiltonian? [2pts].

(1b) Invent your own (ideally quite simple) Hamiltonian for (i) a system, (ii) a measurement apparatus capable of measuring a certain observable of the system, (iii) and environment, for simplicity only interacting with the apparatus. In terms of that Hamiltonian, decide what are the pointer states of the apparatus [4pts].

(2) Von-Neumann measurement of position: Consider a particle in one dimension (1D) with wavefunction $\psi(x_1) = \frac{1}{\pi^{1/4}\sigma^{1/2}}e^{-\frac{x_1^2}{2\sigma^2}}$ and a second "detector or apparatus" particle (also in 1D) with some unknown initial wavefunction $\phi_0(x_2)$. Suppose through some sort of interaction, the initial to final state sequence of this system plus apparatus model is

$$\Psi_0(x_1, x_2) = \psi(x_1)\phi_0(x_2) \to \Psi_f(x_1, x_2) = \psi(x_1)\phi(x_2 - x_1), \tag{1}$$

where $\phi(x_2) = \frac{1}{\pi^{1/4} \sigma^{1/2}} e^{-\frac{x_2^2}{2\eta^2}}$, with $\eta \ll \sigma$. Now suppose we measure the position x_2 of the second particle with finite resolution r_2 . Our measurement apparatus has a series of pixels i, and one can say that after finding a click on pixel j the wavefunction has collapsed into $\hat{P}_i |\Psi\rangle$, where

$$\hat{P}_j = \int dx' f_j(x') |x'\rangle \langle x'|, \qquad (2)$$

where $f_j(x') > 0$ are real $\sum_j f_j(x') = 1$ (Think of each f_j as the sensitivity for (discrete) pixel x_j to trigger if the (continuous) position was near x_j . For a perfect detector this should be a step function, but that does not exist, so at best it will be a smoothened/blurry step function). The \hat{P}_j are called a "positive operator-valued measure" (POVM), and can be applied to describe realistic physical measurements of continuum variables, which cannot be perfect projections onto just one state.

(2a) Make a drawing of the density $|\Psi_f(x_1, x_2)|^2$ prior to measurement, discussing its physical meaning. Then also draw the density after our detector has measured position on pixel *j*. Use this to argue why we have made an imperfect QND measurement of the position of particle 1. [4 points] *Hint: To convert a wavefunction* $\varphi(x)$ of position into bra-ket notation, use $|\Psi\rangle = \int dx \varphi(x) |x\rangle$ and then $\langle x_1 | x_2 \rangle = \delta(x_1 - x_2)$ for position eigenkets, see the new section 3.1.3. of the notes.

(2b) Now bring the initial two-body wavefunction into momentum space with a Fourier transform, and draw or plot $|\tilde{\Psi}_f(p_1, p_2)|^2$ (taking into account $\eta \ll \sigma$). Discuss whether the detector particle could also be viewed as having measured the momentum p_x of the other particle while you treat it as a von-Neumann measurement. Relate your discussion to the preferred basis problem. [5 points]

(3) (Decoherence) Consider an infinitely heavy two-level impurity atom (violet) at the origin, within a very cold gas of N free atoms of mass m from another species, with which it interacts through central interaction potentials $V_g(r)$ ($V_e(r)$) if it is in state $|g\rangle$ ($|e\rangle$), as sketched below:

All the (mutually non-interacting) ambient atoms (orange) are in the zero-momentum ground state of a box shaped quantisation volume \mathcal{V} , hence their wavefunction is $\phi(\mathbf{x}) = \langle \mathbf{x} | 0 \rangle = 1/\sqrt{\mathcal{V}} = const.$

We can write the Hamiltonian for this system as:

$$\hat{H} = \Delta E\left[|e\rangle\langle e|\right]^{(I)} + \sum_{n} \left[\left(-\frac{\hbar^2 \nabla_{\mathbf{r}_{(n)}}^2}{2m}\right) + V_e(|\mathbf{r}_{(n)}|)\left[|e\rangle\langle e|\right]^{(I)} + V_g(|\mathbf{r}_{(n)}|)\left[|g\rangle\langle g|\right]^{(I)}\right],$$
(3)

where $\mathbf{r}_{(n)}$ is the position of gas atom n and operators with ^(I) act on the impurity only, and the energy difference between $|g\rangle$ and $|e\rangle$ is ΔE .

- (3a) Show or argue that this Hamiltonian decomposes into lots of blocks, one for each environment atom and impurity spin state [2pts].
- (3b) We assume the initial system-environment state

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|g\rangle + |e\rangle) \otimes \prod_{k} [|0\rangle]^{(k)}, \tag{4}$$

where $^{(k)}$ flags the state of environment atom k. Show, that within each block, we only have to solve a single particle problem, described by the Schrödinger equation:

$$i\hbar\dot{\phi}_k(\mathbf{x}) = \left(-\frac{\hbar^2}{2m}\boldsymbol{\nabla}^2 + V_k(\mathbf{x}) + \Delta E\delta_{ke}\right)\phi_k(\mathbf{x}),\tag{5}$$

where k labels the impurity state. For short times and very strong potential V (such that we can ignore the kinetic energy operator), show that this is solved approximately by $\phi_k(\mathbf{x}, t) = \phi_k(\mathbf{x}, 0)e^{-\frac{i}{\hbar}[V_k(\mathbf{x}) + \Delta E\delta_{ke}]t}$ [2pts].

(3c) While these conditions are valid (for short times), find the time-evolution of the magnitude of the coherence between $|g\rangle$ and $|e\rangle$ in the reduced density matrix of the system [5pts].

(4) Numerical evaluation of Wigner function:

(4a) Show the two properties of the Wigner function, that $P(x) = \int dp W(x,p)$ and $P(p) = \int dx W(x,p)$, where P(x) [P(p)] is the position (momentum) distribution in state $\rho = |\Psi\rangle\langle\Psi|$. [3 points]

(4b) The script Assignment3_plot_wignerfunction.m can be used to plot the Wigner function of any input state $\Psi(x)$ in matlab. Compare the wigner function in (i) a single coherent state, (ii) a specific oscillator eigenstate, e.g. n = 5, (iii) a superposition of two oscillator eigenstates. Discuss in the context of your understanding of a classical phase space. Then edit the script to plot Wigner functions of any other 1D quantum states that interest you (discuss those as well). [3 points]