
Phys 637, I-Semester 2022/23, Assignment 3

Instructor: Sebastian Wüster
Due-date: Lecture 15.9.2021

(1) Pointer states:

(1a) What are the pointer states of the system in the quantum brownian motion
Hamiltonian? [2pts].

(1b) Invent your own (ideally quite simple) Hamiltonian for (i) a system, (ii) a mea-
surement apparatus capable of measuring a certain observable of the system, (iii) and
environment, for simplicity only interacting with the apparatus. In terms of that
Hamiltonian, decide what are the pointer states of the apparatus [4pts].

(2) Von-Neumann measurement of position: Consider a particle in one di-

mension (1D) with wavefunction ψ(x1) = 1
π1/4σ1/2 e

− x21
2σ2 and a second “detector or

apparatus” particle (also in 1D) with some unknown initial wavefunction ϕ0(x2).
Suppose through some sort of interaction, the initial to final state sequence of this system
plus apparatus model is

Ψ0(x1, x2) = ψ(x1)ϕ0(x2) → Ψf (x1, x2) = ψ(x1)ϕ(x2 − x1), (1)

where ϕ(x2) =
1

π1/4σ1/2 e
− x22

2η2 , with η ≪ σ. Now suppose we measure the position x2 of the

second particle with finite resolution r2. Our measurement apparatus has a series of pixels
i, and one can say that after finding a click on pixel j the wavefunction has collapsed into
P̂j|Ψ ⟩, where

P̂j =

∫
dx′fj(x

′)|x′ ⟩⟨x′ |, (2)

where fj(x
′) > 0 are real

∑
j fj(x

′) = 1 (Think of each fj as the sensitivity for (discrete)
pixel xj to trigger if the (continuous) position was near xj. For a perfect detector this
should be a step function, but that does not exist, so at best it will be a smoothened/blurry
step function). The P̂j are called a “positive operator-valued measure” (POVM), and
can be applied to describe realistic physical measurements of continuum variables, which
cannot be perfect projections onto just one state.

(2a) Make a drawing of the density |Ψf (x1, x2)|2 prior to measurement, discussing its
physical meaning. Then also draw the density after our detector has measured position
on pixel j. Use this to argue why we have made an imperfect QND measurement of the
position of particle 1. [4 points] Hint: To convert a wavefunction φ(x) of position into
bra-ket notation, use |Ψ ⟩ =

∫
dxφ(x)|x ⟩ and then ⟨x1 |x2 ⟩ = δ(x1 − x2) for position

eigenkets, see the new section 3.1.3. of the notes.
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(2b) Now bring the initial two-body wavefunction into momentum space with a Fourier
transform, and draw or plot |Ψ̃f (p1, p2)|2 (taking into account η ≪ σ). Discuss whether
the detector particle could also be viewed as having measured the momentum px of the
other particle while you treat it as a von-Neumann measurement. Relate your discussion
to the preferred basis problem. [5 points]

(3) (Decoherence) Consider an infinitely heavy two-level impurity atom (violet) at the
origin, within a very cold gas of N free atoms of mass m from another species, with which
it interacts through central interaction potentials Vg(r) (Ve(r)) if it is in state | g ⟩ (| e ⟩),
as sketched below:

All the (mutually non-interacting) ambient atoms (orange) are in the zero-momentum
ground state of a box shaped quantisation volume V , hence their wavefunction is ϕ(x) =
⟨x | 0 ⟩ = 1/

√
V = const.

We can write the Hamiltonian for this system as:

Ĥ = ∆E
[
| e ⟩⟨ e |

](I)
+
∑
n

[(
−
ℏ2∇r(n)

2

2m

)

+ Ve(|r(n)|)
[
| e ⟩⟨ e |

](I)
+ Vg(|r(n)|)

[
| g ⟩⟨ g |

](I)
)

]
, (3)

where r(n) is the position of gas atom n and operators with (I) act on the impurity only,
and the energy difference between | g ⟩ and | e ⟩ is ∆E.

(3a) Show or argue that this Hamiltonian decomposes into lots of blocks, one for each
environment atom and impurity spin state [2pts].

(3b) We assume the initial system-environment state

|Ψ ⟩ = 1√
2
(| g ⟩+ | e ⟩)⊗

∏
k

[| 0 ⟩](k), (4)

where (k) flags the state of environment atom k. Show, that within each block, we
only have to solve a single particle problem, described by the Schrödinger equation:

iℏϕ̇k(x) =

(
− ℏ2

2m
∇2 + Vk(x) + ∆Eδke

)
ϕk(x), (5)
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where k labels the impurity state. For short times and very strong potential V (such
that we can ignore the kinetic energy operator), show that this is solved approxi-

mately by ϕk(x, t) = ϕk(x, 0)e
− i

ℏ [Vk(x)+∆Eδke]t [2pts].

(3c) While these conditions are valid (for short times), find the time-evolution of the
magnitude of the coherence between | g ⟩ and | e ⟩ in the reduced density matrix of
the system [5pts].

(4) Numerical evaluation of Wigner function:
(4a) Show the two properties of the Wigner function, that P (x) =

∫
dpW (x, p) and

P (p) =
∫
dxW (x, p), where P (x) [P (p)] is the position (momentum) distribution in state

ρ = |Ψ ⟩⟨Ψ |. [3 points]

(4b) The script Assignment3 plot wignerfunction.m can be used to plot the Wigner
function of any input state Ψ(x) in matlab. Compare the wigner function in (i) a single
coherent state, (ii) a specific oscillator eigenstate, e.g. n = 5, (iii) a superposition of two
oscillator eigenstates. Discuss in the context of your understanding of a classical phase
space. Then edit the script to plot Wigner functions of any other 1D quantum states that
interest you (discuss those as well). [3 points]
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