
Phys 637, I-Semester 2022/23, Assignment 3 solution

(1) Pointer states:

(1a) What are the pointer states of the system in the quantum brownian motion Hamil-
tonian? [2pts].

Solution: The interaction Hamiltonian of the QBM model is:

Hint = X̂ ⊗
∑
i

κiqi = X̂ ⊗ Ê (1)

So the pointer states of the system are the eigenfunctions of the X̂ operator which is the
set of delta functions {δ(x− a), ∀a ∈ R}.

(1b) Invent your own (ideally quite simple) Hamiltonian for (i) a system, (ii) a mea-
surement apparatus capable of measuring a certain observable of the system, (iii) and
environment, for simplicity only interacting with the apparatus. In terms of that Hamil-
tonian, decide what are the pointer states of the apparatus [4pts].

Solution: Rydberg atom is an atom with a very high principal quantum number meaning
that the valence electrons (usually a single electron) will have a large orbital size. Con-
sider a Rydberg atom embedded with a fixed position within a Bose-Einstein condensate.
In such a case, one can consider the Rydberg atom as a system of a pseudospin (where
the angular momentum state |s(l = 0)⟩ → |↓⟩ and |p(l = 1)⟩ → |↑⟩), the BEC atoms
inside the Rydberg orbit (of radius r) form the apparatus and the BEC atoms outside the
Rydberg orbit form the environment. In this case, the Rydberg electron interacts only with
the atoms within its orbital range as such the environment interacts only with the appa-
ratus. For simplicity, we consider a single bosonic oscillator of frequency ωA within the
Rydberg atom orbit as the apparatus (coupled to the system via the coupling constant κ
which depends on l such that the atom can “measure” the pseudospin state) and another
single oscillator of frequency ωE outside it as the environment (interaction strength be-
tween the apparatus and environment is U0). Then the different parts of the Hamiltonian
can be written as follows:

ĤS =
1

2
ℏω0σ̂z −

1

2
ℏ∆σ̂x (2)

ĤA =
p2A
2mA

+
1

2
mAω

2
Ar

2
A (3)

ĤSA = σ̂z ⊗ κr̂A (4)

ĤE =
p2E
2mE

+
1

2
mEω

2
E(rE − r)2 (5)

ĤAE = U0r̂A ⊗ r̂E (6)

Then the pointer states of the apparatus will be the position eigenstates of an oscillator.

(2) Von-Neumann measurement of position: Consider a particle in one dimension
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(1D) with wavefunction ψ(x1) =
1

π1/4σ1/2 e
− x21

2σ2 and a second “detector or apparatus” par-
ticle (also in 1D) with some unknown initial wavefunction ϕ0(x2). Suppose through some
sort of interaction, the initial to final state sequence of this system plus apparatus model
is

Ψ0(x1, x2) = ψ(x1)ϕ0(x2) → Ψf (x1, x2) = ψ(x1)ϕ(x2 − x1), (7)

where ϕ(x2) =
1

π1/4σ1/2 e
− x22

2η2 , with η ≪ σ. Now suppose we measure the position x2 of the

second particle with finite resolution r2. Our measurement apparatus has a series of pixels
i, and one can say that after finding a click on pixel j the wavefunction has collapsed into
P̂j|Ψ ⟩, where

P̂j =

∫
dx

′
fj(x

′
)|x′ ⟩⟨x′ |, (8)

where fj(x
′
) > 0 are real

∑
j fj(x

′
) = 1 (Think of each fj as the sensitivity for (discrete)

pixel j to trigger if the (continuous) position was x
′
. For a perfect detector this should

be a step function, but that does not exist, so at best it will be a smoothened/blurry step
function). The P̂j are called a “positive operator-valued measure” (POVM), and can be
applied to describe realistic physical measurements of continuum variables, which cannot
be perfect projections onto just one state.

(2a) Make a drawing of the density before the measurement |Ψf (x1, x2)|2, discussing its
physical meaning. Then also draw the density after our detector has measured position
on pixel j. Use this to argue why we have made an imperfect QND measurement of the
position of particle 1. [4 points] Hint: To convert a wavefunction φ(x) of position into
bra-ket notation, use |Ψ ⟩ =

∫
dxφ(x)|x ⟩ and then ⟨x1 |x2 ⟩ = δ(x1 − x2) for position

eigenkets.

Solution:

|Ψf (x1, x2)|2 = |Ψ(x1)ϕ(x2 − x1)|2

= Nexp

[
−x

2
1

σ2
− (x2 − x1)

2

η2

]
; η ≪ σ,

= Nexp

[
−x

2
1

σ2

]
exp

[
−(x2 − x1)

2

η2

]
. (9)

This means particle 1 (x1) is in a Gaussian state of width σ and particle 2 (x2) is “close to
x1” up to a distance η. The final state density |Ψf (x1, x2)|2 is shown in Fig. 1. The joint
probability density to find particle 1 in an interval dx1 around position x1 and particle 2 in
an interval dx2 around position x2 is given by |Ψf (x1, x2)|2dx1dx2. Hence we can see from
the diagram that measuring particle one near some x1 = x0, will very likely imply that
particle 2 is also at x2 = x0, up to a deviation of order η. Hence we can view the second
particle as a “von-Neumann-measurement apparatus” that has measured the position of
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Figure 1: Position space density |Ψf (x, y)|2 after interactions before projection.

particle 1 (or the other way round). To apply the projection operator, we use the hint for
the 2-dimensional case as follows:

|Ψf⟩ =
∫

dx1 dx2Ψf (x1, x2)|x1x2⟩. (10)

Hence,

P̂j|Ψ⟩ =
∫

dx1 dx2Ψf (x1, x2)

∫
dx

′
fj(x

′
)|x1⟩|x

′⟩ ⟨x′|x2⟩︸ ︷︷ ︸
δ(x′−x2)

=

∫
dx1 dx2 Ψf (x1, x2)fj(x2)|x1⟩|x2⟩. (11)

So, the post-measurement wavefunction can be written as:

Ψpm(x1, x2) = Ψf (x1, x2)fj(x2). (12)

The density plot of |Ψpm(x1, x2)|2 is as given in Fig.2.

(2b) Now bring the initial two-body wavefunction into momentum space with a Fourier
transform, and draw or plot |Ψ̃f (p1, p2)|2 (taking into account η ≪ σ). Discuss whether
the detector particle could also be viewed as having measured the momentum p1 of the
other particle while you treat it as a van-Neumann measurement. Relate your discussion
to the preferred basis problem. [5 points]

Solution: The Fourier transformation of the final wavefunction can be calculated with the
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Figure 2: Position space density |Ψf (x, y)|2 after projection (complete measurement).

usual methods as:

Ψ̃f (p1, p2) =
1

2π

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2Ψ(x1, x2)e

−ip1x1/ℏ−ip2x2/ℏ,

=
1

2π

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2ψ(x1)ϕ(x2 − x1)e

−ip1x1/ℏ−ip2x2/ℏ,

=
1

2π

1√
πσ

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2e

− x21
2σ2 e

− (x2−x1)
2

2η2 e−ip1x1/ℏ−ip2x2/ℏ. (13)

This integral can be calculated either using a Gaussian integration technique or with math-
ematica. Using the Mathematica, we get:

Figure 3: Momentum space density |Ψ̃f (px, py)|2 after interactions before projection.

Ψ̃f (p1, p2) =
1√
πσ

1√
1
η2

+ 1
σ2

1√
1

η2+σ2

× e(
−p22σ

2−2p1p2σ
2−p22(η

2+σ2)

2ℏ2 ),
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=
1√
πσ

1√
1
η2

+ 1
σ2

1√
1

η2+σ2

× e(
−(p1+p2)

2σ2−p22η
2

2ℏ2 ),

=

√
η2√
π

× e(
−(p1+p2)

2σ2−p22η
2

2ℏ2 ),

= ψ̃(p1 + p2)ϕ̃(p2), (14)

where ψ̃(p1 + p2) =
√
η

π1/4 e
(
−(p1+p2)

2σ2

2ℏ2 ) and ϕ̃(p2) =
√
η

π1/4 e
(− (p2)

2η2

2ℏ2 ). The final density,

|Ψ̃(p1, p2)|2 is shown in Fig. 3 for some chosen parameters under the condition η ≪ σ.
We can see that if we measure particle 2 to have some momentum p2 = p0 , then
very likely particle one had momentum p1 = −p0. Except the sign flip the situa-
tion is thus the same as for position, and we can also interpret particle 2 as having
measured the momentum of particle 1. Treated as a von-Neumann-measurement,
we can thus see that we cannot even tell whether our “apparatus” measures position
or momentum, even though the two are conjugate variables. This is a manifestation
of the preferred basis problem discussed in the lecture, for a continuous degree of freedom.

(3) (Decoherence) Consider an infinitely heavy two-level impurity atom (violet) at the
origin, within a very cold gas of N free atoms of mass m from another species, with which
it interacts through central interaction potentials Vg(r) (Ve(r)) if it is in state | g ⟩ (| e ⟩),
as sketched below:

All the (mutually non-interacting) ambient atoms (orange) are in the zero-momentum
ground state of a box shaped quantisation volume V , hence their wavefunction is ϕ(x) =
⟨x | 0 ⟩ = 1/V = const.

We can write the Hamiltonian for this system as:

Ĥ = ∆E
[
| e ⟩⟨ e |

](I)
+
∑
n

[(
−
ℏ2∇r(n)

2

2m

)

+ Ve(|r(n)|)
[
| e ⟩⟨ e |

](I)
+ Vg(|r(n)|)

[
| g ⟩⟨ g |

](I)
)

]
, (15)

where r(n) is the position of gas atom n and operators with (I) act on the impurity only,
and the energy difference between | g ⟩ and | e ⟩ is ∆E.
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(3a) Show or argue that this Hamiltonian decomposes into lots of blocks, one for each
environment atom and impurity spin state [2pts].

(3b) We assume the initial system-environment state

|Ψ ⟩ = 1√
2
(| g ⟩+ | e ⟩)⊗

∏
k

[| 0 ⟩](k), (16)

where (k) flags the state of environment atom k. Show, that within each block, we
only have to solve a single particle problem, described by the Schrödinger equation:

iℏϕ̇(x) =
(
− ℏ2

2m
∇2 + Vk(x)

)
ϕ(x), (17)

where k labels the impurity state. For short times and very strong potential V (such
that we can ignore the kinetic energy operator), show that this is solved approx-

imately by ϕ(x, t) = ϕ(x, 0)e−
i
ℏVk(x)t [2pts]. Solution: Due to the block structure

above, the time evolution operator decomposes also into

Û(t) = Ûg(t)| g ⟩⟨ g |+ Ûe(t)| e ⟩⟨ e |. (18)

and Ûg(t) =
∏

k Û
(k)
g (t), with Û

(k)
g (t) = e−i⟨ g |ĥ(n)| g ⟩/ℏt That last part is just a single

particle time evolution operator, containing a potential energy given by Vg(x). This,
we know from QM1, can be handled by the TDSE Eq. (17). If we ignore the kinetic
energy operator, that equation can just be trivially solved for each r separately, with
the solution given. (Or insert that solution into TDSE, to show that it solves it).

(3c) While these conditions are valid (for short times), find the time-evolution of the
magnitude of the coherence between | g ⟩ and | e ⟩ in the reduced density matrix of
the system [5pts]. Solution: Applying this to the initial state Eq. (19) gives us the
time evolving state:

|Ψ(t) ⟩ = 1√
2
(| g ⟩ ⊗

∏
k

[|ϕg(t) ⟩](k) + | e ⟩ ⊗
∏
k

[|ϕe(t) ⟩|](k), (19)

where ϕk(x, t) = ⟨x |ϕk(t) ⟩.
Using Eq. (3.21) or (3.28) of the lecture, we now know that the coherence between
| g ⟩ and | e ⟩ in the reduced density matrix of the system is

ρeg =
1

2

(∏
k

⟨ϕg(t) |](k)
)(

[
∏
k

|ϕe(t) ⟩](k)
)

=
1

2

∏
k

⟨ϕg(t) |ϕe(t) ⟩(k)

=

(∫
V
d3x ϕg(x, t)

∗ϕe(x, t)

)N

, (20)

where we have used the fact that the wavefunction for all N gas particles will have
exactly the same time evolution, conditional only on the impurity being in g or e.
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Further

ρeg =

(∫
V
d3x ϕ∗(x, 0)e

i
ℏVg(x)tϕ(x, 0)e−

i
ℏVe(x)t

)N

,

≈
(
1

V

∫
V
d3x (1 +

i

ℏ
Vg(x)t)(1−

i

ℏ
Ve(x)t)

)N

≈
(
1 +

i

ℏV

∫
V
d3x[Vg(x)t− Ve(x)t]

)N

≈ 1 +
iNt

ℏV

∫
V
d3x[Vg(x)− Ve(x)] (21)

Using the gas particle density ϱ = N/V and |ρeg| =
√
ρ∗egρeg, we finally have:

|ρeg| ≈
1

2

√
1− (ϱ∆V/ℏ)2t2 ≈ 1

2

(
1− (ϱ∆V/

√
2ℏ)2t2

)
=

1

2

(
1− (t/τ)2

)
(22)

with ∆V ≡
∫
V d

3x[Vg(x)− Ve(x)], from which we can read off the decoherence time-
scale

τ =
√
2ℏ/(ϱ∆V ), (23)

similar to example 22 of the lecture. It seems logical, that decoherence is faster, if
the gas is denser, and if the interaction with different states of the impurity are more
different.

(4) Numerical evaluation of Wigner function:
(4a) Show the two properties of the Wigner function, that P (x) =

∫
dpW (x, p) and

P (p) =
∫
dxW (x, p), where P (x) [P (p)] is the position (momentum) distribution in state

ρ = |Ψ ⟩⟨Ψ |. [3 points]

Solution: Starting from the Wigner function for a pure state

W (x, p) =
1

2π

∫ ∞

−∞
dy eipy Ψ(x− y

2
)Ψ(x+

y

2
)∗, (24)

we write∫ ∞

−∞
dpW (x, p) =

1

2π

∫ ∞

−∞
dy

[∫ ∞

−∞
dpeipy

]
︸ ︷︷ ︸

=(2π)δ(y)

Ψ(x− y

2
)Ψ(x+

y

2
)∗ = |Ψ(x)|2 = P (x).

(25)

The other relation is slightly more tricky:∫ ∞

−∞
dxW (x, p) =

1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dx eipy Ψ(x− y

2
)Ψ(x+

y

2
)∗

x̃=x+y/2
=

1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dx̃ eipy Ψ(x̃− y)Ψ(x̃)∗

ỹ=x̃−y
= (−1)2

1

2π

∫ ∞

−∞
dỹ

∫ ∞

−∞
dx̃ eip(x̃−ỹ) Ψ(ỹ)Ψ(x̃)∗

=

[
1√
2π

∫ ∞

−∞
dỹe−ipỹ Ψ(ỹ)

] [
1√
2π

∫ ∞

−∞
dx̃e−ipx̃ Ψ(x̃)

]∗
= |Ψ̃(p)|2 = P (p),

(26)
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where we used the Fourier transform Ψ̃(p) = 1√
2π

∫∞
−∞ dxe−ipx Ψ(x) and set ℏ = 1.

(4b) The script Assignment3 plot wignerfunction.m can be used to plot the Wigner
function of any input state Ψ(x) in matlab. Compare the wigner function in (i) a single
coherent state, (ii) a specific oscillator eigenstate, e.g. n = 5, (iii) a superposition of two
oscillator eigenstates. Discuss in the context of your understanding of a classical phase
space. Then edit the script to plot Wigner functions of any other 1D quantum states that
interest you (discuss those as well). [3 points] Solution: Figures for states (ii) and (iii)
are shown below, state 1 is shown in example 25 of the lecture.

Figure 4: Position distribution (left), Wigner function (middle), and the momentum space
distribution (right) for state 3 (harmonic oscillator state φ5(x)) defined in the matlab
script provided. We see an overall oscillatory structure. It is clear that negative regions
in W (x, p) are required, in order for the integrations as in (3a) to correctly reproduce the
nodes with P (x) = 0 or P (p) = 0 in the position and momentum distribution.
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Figure 5: Position distribution (left), Wigner function (middle), and the momentum space
distribution (right) for state 2, (superposition of harmonic oscillator state φ5(x) and φ2(x)
. We see an overall oscillatory structure with greater number of nodes, some rings at the
right energy for either state, but many interference features.
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