
Phys 435,I-Semester 2022/23, Assignment 2 solution

Instructor: Sebastian Wüster

(1) Coupled harmonic oscillators: Consider two quantum mechanical harmonic oscil-
lators of mass m = 1, described with the Hamiltonian

Ĥ = ℏω
(
â†â+

1

2
) + ℏω

(
b̂†b̂+

1

2
) + ℏκ

(
â† + â

)(
b̂† + b̂

)
. (1)

where â†, â are ladder operators for oscillator 1, and b̂†, b̂ for oscillator 2.
This corresponds to the classical Hamiltonian

H =
1

2

(
p21 + ω2x21

)
+

1

2

(
p22 + ω2x22

)
+ 2κωx1x2. (2)

(1a) Writing a quantum state |Ψ(t) ⟩ =
∑

nm cnm(t)|n,m ⟩, where |n,m ⟩ are two-
oscillator number states as defined at the end of section 2.1. in the lecture, find the
time evolution equation for all cnm(t). [3 points]

The equations are

iℏċnm(t) = ℏω(n+m+ 1)cnm(t) + ℏκ
(√

n(m+ 1)cn−1,m+1 +
√

(n+ 1)mcn+1,m−1

+
√
nmcn−1,m−1 +

√
(n+ 1)(m+ 1)cn+1,m+1

)
, (3)

(where for the last term each we understand that e.g. cn,m = 0 or does not exist, whenever
n < 0 or m < 0).

(1b) Suppose you have solved these, find the reduced density matrix for the first oscillator
only, in the state |Ψ(t) ⟩ (i.e. in terms of some general cnm(t)). [2 points]

First we write the density matrix for a pure two-body state |Ψ(t) ⟩ as above, which is

ρ(t) =
∑

nm;n′m′

ρnm;n′m′(t)|n,m ⟩⟨n′m′ | ≡
∑

nm;n′m′

cnmc
∗
n′m′(t)|n,m ⟩⟨n′m′ | (4)

The we use the definition of the reduced DM for oscillator A as ρ̂A =
∑

k

(
⟨ k |B

)
ρ̂| k ⟩B,

where | k ⟩B is the oscillator basis for only the second oscillator. With this we obtain

ρ(t)A =
∑
nn′k

ρnk,n′k|n ⟩A⟨n′ |A. (5)

(1c) Nextly, find the general expression for the purity of that reduced density matrix. [5

points]

From the definition the purity is P (t) = TrA[ρ(t)
2
A]. Explicit insertion of (5) gives

P (t) =
∑
l

⟨ l |
(∑

nn′k

ρnk,n′k|n ⟩⟨n′ |
)( ∑

mm′k′

ρmk′,m′k′ |m ⟩⟨m′ |)
)
| l ⟩ (6)
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(i) We have omitted subscripts A, B, since all states in (6) pertain to oscillator A. (ii)
It is very important to use DIFFERENT summation indices in the second copy of ρ(t)A
than in the first. We now use ⟨ l |n ⟩ = δln, ⟨n′ |m ⟩ = δn′m and ⟨m′ | l ⟩ = δm′l, which
removes three of the seven sums and all of the basis vectors. Thus

P (t) =
∑
lk;mk′

ρlk,mkρmk′,lk′ . (7)

We can now insert coefficients c, but the expression (7) also suffices.

(2) Numerical solution: Now implement a numerical solution for the time evolution you
found in (1a). Implement your equations in the file Assignment2 program draft v1.xmds

provided online. Follow the info-sheet Numerics assignments info.pdf to run your
code once implemented. The code is set up to begin in a product of coherent states
initially, with |Ψ(0) ⟩ = |α ⟩ ⊗ | β ⟩.

(2a) First, check that normalisation and energy are conserved, using
Assignment2 plot checks v1.m. Then inspect dynamics of the mean phase space
coordinates in Assignment2 plot oscillations v1.m to check they make sense. Also
run Assignment2 classical osc v1.xmds into which you still have to insert the classical
Newton’s equations following from (2). Finally plot a comparison of quantum expectation
values and classical results using Assignment2 compare oscillations v1.m, and discuss
all your results. [5 points]

See solution codes and plots online. Discussion: You should find perfect agreement between
the quantum expectation values ⟨x1⟩, ⟨x2⟩, ⟨p1⟩, ⟨p2⟩ and the corresponding classical
results. This is a consequence of the Ehrenfest theorem in quantum mechanics (see
e.g. Griffith problem 1.12). This perfect agreement is somewhat special for a harmonic
oscillator.

(2b) Implement your result for the purity from (1c) in the code as instructed at the end
of the .xmds file, and plot this for the same dynamics as in (2a). Then for testing, run
it with no coupling κ = 0 and plot again. What did you expect, what did you find?
Discuss. Finally change the initial state for the second oscillator to (| 2 ⟩ + | 5 ⟩)/

√
2 by

uncommenting the corresponding lines. Plot the purity also now and discuss [5 points].

When κ = 0, we have to of course find that P (t) ≡ 1, since oscillator A must remain
in a pure (reduced) state. For nonzero coupling, we find deviations from 1, meaning the
oscillator A entangles with oscillator B. How much it does strongly depends on the initial
state of oscillator B, see plots.

(3) Diagonal system and thermal environment: Let us consider a multi-state (in-
dexed by k) system with an environment of M harmonic oscillators 1, with Hamiltonian

1Just to be definite, the discussion works for any environment.
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Ĥ = ĤS + Ĥint + ĤE using

ĤS =
∑
k

ϵk| k ⟩⟨ k |,

Ĥint =
∑
k

κk| k ⟩⟨ k | ⊗ Êk,

ĤE =
M∑
n=1

ℏωnb̂
†
nb̂n. (8)

where Êk can be expressed as some function of the b̂n.

(3a) Show that the Hamiltonian is block-diagonal in terms of | k ⟩. [1 point]

Solution: Let’s arrange our basis in the order

B = {B0, B1, B2, · · · } (9)

where Bk = {| k ⟩ ⊗ |n ⟩}, for fixed state | k ⟩ of the system and n running through all
possible indices of the environment.

Taking an arbitrary vector |ϕk ⟩ from Bk and another one |ϕk′ ⟩ from Bk′ with k ̸= k′,
we see that

⟨ϕk |Ĥ|ϕk′ ⟩ = 0, (10)

since all terms in the Hamiltonian are ∼ | k ⟩⟨ k |. Thus each part of the Hamiltonian with
different | k ⟩⟨ k | forms a block, let us call that Ĥk, even though each block is still infinite
dimensional. Then Ĥ =

∑
k Ĥk.

(3b) Write the thermal state density matrix ρ̂E,T for the environment at temperature T ,
in terms of many-body oscillator states |n ⟩ ≡ |n1, n2, · · · , nM ⟩. [1 point] Solution: Since

the environment is just a sum of harmonic oscillators, we can read off the Hamiltonian,
that |n ⟩ is an eigenstate, with energy En =

∑
ℓ ℏωℓnℓ. Thus the explicit thermal density

matrix is

ρ̂E,T =
1

Z

∑
n

e
−

∑
ℓ ℏωℓnℓ
kBT |n ⟩⟨n |, (11)

with Z =
∑

n e
−

∑
ℓ ℏωℓnℓ
kBT .

(3c) Let |Ψk,n(t) ⟩ be the many body state of system and environment that arises through
time evolution (using Schrödinger’s equation) from the initial state |ϕk;n(0) ⟩ = | k ⟩⊗|n ⟩.
Then show that a density matrix of the form

ρ̂(t) =
∑
k,k′

∑
n

pn

[
ckc

∗
k′ |Ψk,n(t) ⟩⟨Ψk′,n(t) |

]
, (12)
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fulfills the von-Neumann equation from the separable initial state

ρ̂(0) = |ψS(0) ⟩⟨ψS(0) | ⊗ ρ̂E,T , (13)

where the initial system state is |ψS(0) ⟩ =
∑

k ck| k ⟩. Determine pn. [4 points] Solution:

Let us first formalise the statement that |Ψk,n(t) ⟩ arises through time evolution using
Schrödinger’s equation from the given initial state. This implies:

|Ψk,n(t) ⟩ = Û(t)| k ⟩ ⊗ |n ⟩ = e−iĤt/ℏ| k ⟩ ⊗ |n ⟩, (14)

where Û is the time evolution operator. Due to the block structure found earlier, we can
write

Û(t) = e−iĤt/ℏ =
∏
k

e−iĤkt/ℏ, (15)

where in the second equality we used that
[
Ĥk, Ĥk′

]
= 0. Thus we see that

|Ψk,n(t) ⟩ = e−iĤkt/ℏ| k ⟩ ⊗ |n ⟩, (16)

i.e. only the “correct block in the Hamiltonian” is going to contribute to the time-evolution
of an initial state starting in | k ⟩ only.

We know in general, that ρ̂(t) = e−iĤt/ℏρ̂(0)eiĤt/ℏ solves the von-Neumann equation
from the initial state (initial density matrix) ρ̂(0). To see this:

iℏ ˙̂ρ(t) product rule= iℏ
[
(− i

ℏ
Ĥ)e−iĤt/ℏρ(0)eiĤt/ℏ + e−iĤt/ℏρ(0)eiĤt/ℏ(

i

ℏ
Ĥ)

]
= Ĥρ̂(t)− ρ̂(t)Ĥ =

[
Ĥ, ρ̂(t)

]
. (17)

Starting from the initial density matrix given in (13), we thus have to find

ρ̂(t) = e−iĤt/ℏ|ψS(0) ⟩⟨ψS(0) | ⊗
∑
n

pn|n ⟩⟨n |eiĤt/ℏ, (18)

with coefficients pn defined in Eq. (11). We can rewrite this step by step as follows

=
∑
k,k′

e−iĤt/ℏckc
∗
k′| k ⟩⟨ k′ | ⊗

∑
n

pn|n ⟩⟨n |eiĤt/ℏ.

=
∑
k,k′

∑
n

pnckc
∗
k′e

−iĤt/ℏ| k;n ⟩⟨ k′;n |eiĤt/ℏ.

Eq. (15)
=

∑
k,k′

∑
n

pnckc
∗
k′e

−iĤkt/ℏ| k;n ⟩⟨ k′;n |eiĤk′ t/ℏ.

Eq. (16)
=

∑
k,k′

∑
n

pnckc
∗
k′ |Ψk,n(t) ⟩⟨Ψk′,n(t) |, (19)
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which has the form we wanted to reach.

(3d) Derive the reduced density matrix ρ̂S for the system only, similar to the discussion
in section 3.1.4. Suppose there initially was a coherence between two system basis-states,
say k = 0 and k′ = 1. Inspect the coherence matrix element ⟨ k |ρ̂S| k′ ⟩ and discuss under
which conditions this coherence might disappear? Does it always? Which part of the
Hamiltonian decides if it does? How can you interpret the

∑
n pn part? [4 points]

Solution: Similarly to the discussion in section 3.1.4. we will have to use the basis |n ⟩ to
perform the trace over the environment explicitly. In preparation for that, we should write

|Ψk,n(t) ⟩ =
∑
m

d(k,n)m (t)| k,m ⟩. (20)

This is always possible since the |m ⟩ are a basis of the environmental Hilbertspace. The
superscripts (k,n) of the complex coefficients d mean “these are the coefficients for the state
which has evolved from | k;n ⟩ initially”. Insertion into (19), and being careful not to name
two different summation indices (or summation index vectors) with the same letter, we
have

ρ̂(t) =
∑
k,k′

∑
n,m,m′

pnckc
∗
k′d

(k,n)
m (t)d

∗(k′,n)
m′ (t)| k,m ⟩⟨ k′,m′ |, (21)

Now we perform the trace over the environment to obtain the reduced density matrix for
the system:

ρ̂S(t) = TrE[ρ̂(t)] =
∑
s

⟨ s |
∑
k,k′

∑
n,m,m′

pnckc
∗
k′d

(k,n)
m (t)d

∗(k′,n)
m′ (t)| k,m ⟩ ⟨ k′,m′ | s ⟩︸ ︷︷ ︸

=⟨ k′ |δm′,s

=
∑
s

∑
k,k′

∑
n,m,m′

pnckc
∗
k′d

(k,n)
m (t)d∗(k

′,n)
s (t) ⟨ s | k,m ⟩︸ ︷︷ ︸

=| k ⟩δm,s

⟨ k′ |, (22)

where we used the notation δv,w = δv1,w1δv2,w2 · · · δvM ,wM
. Then

ρ̂S(t) =
∑
k,k′

∑
n

pnckc
∗
k′

∑
s

d(k,n)s (t)d∗(k
′,n)

s (t)| k ⟩⟨ k′ |

Eq. (20)
=

∑
k,k′

ckc
∗
k′

∑
n

pn⟨Ψk′,n(t) |Ψk,n(t) ⟩| k ⟩⟨ k′ | (23)

and the matrix element ⟨ k |ρ̂S| k′ ⟩ is governed by
∑

n pn⟨Ψk′,n(t) |Ψk,n(t) ⟩ (except the
part ckc

∗
k′ coming form the initial state only).

This contains a thermal average over the environment through the
∑

n pn · · · , as well
as the feature as seen in section 3.1.4, that the coherence disappears once the states of the
environment that | k ⟩ and | k′ ⟩ are entangled with, have become orthogonal.

Here the coherence can in principle also disappear through the thermal average even
for cases where all ⟨Ψk′,n(t) |Ψk,n(t) ⟩ are non-zero, since these are complex numbers.
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