
Phys 435, I-Semester 2022/23, Assignment 2

Instructor: Sebastian Wüster
Due-date: Fri 2.9.2022

(1) Coupled harmonic oscillators: Consider two quantum mechanical harmonic oscil-
lators of mass m = 1, described with the Hamiltonian

Ĥ = ℏω
(
â†â+

1

2
) + ℏω

(
b̂†b̂+

1

2
) + ℏκ

(
â† + â

)(
b̂† + b̂

)
. (1)

where â†, â are ladder operators for oscillator 1, and b̂†, b̂ for oscillator 2.
This corresponds to the classical Hamiltonian

H =
1

2

(
p21 + ω2x21

)
+

1

2

(
p22 + ω2x22

)
+ 2κωx1x2. (2)

(1a) Writing a quantum state |Ψ(t) ⟩ =
∑

nm cnm(t)|n,m ⟩, where |n,m ⟩ are two-
oscillator number states as defined at the end of section 2.1. in the lecture, find the time
evolution equation for all cnm(t). [3 points]

(1b) Suppose you have solved these, find the reduced density matrix for the first oscillator
only, in the state |Ψ(t) ⟩ (i.e. in terms of some general cnm(t)). [2 points]

(1c) Nextly, find the general expression for the Purity of that reduced density matrix. [5
points]

(2) Numerical solution: Now implement a numerical solution for the time evolution you
found in (1a). Implement your equations in the file Assignment2 program draft v1.xmds

provided online. Follow the info-sheet Numerics assignments info.pdf to run your
code once implemented. The code is set up to begin in a product of coherent states
initially, with |Ψ(0) ⟩ = |α ⟩ ⊗ | β ⟩.

(2a) First, check that normalisation and energy are conserved, using
Assignment2 plot checks v1.m. Then inspect dynamics of the mean phase space
coordinates in Assignment2 plot oscillations v1.m to check they make sense. Also
run Assignment2 classical osc v1.xmds into which you still have to insert the classical
Newton’s equations following from (2). Finally plot a comparison of quantum expectation
values and classical results using Assignment2 compare oscillations v1.m, and discuss
all your results. [5 points]

(2b) Implement your result for the purity from (1c) in the code as instructed at the end
of the .xmds file, and plot this for the same dynamics as in (2a). Then for testing, run
it with no coupling κ = 0 and plot again. What did you expect, what did you find?
Discuss. Finally change the initial state for the second oscillator to (| 2 ⟩ + | 5 ⟩)/

√
2 by

uncommenting the corresponding lines. Plot the purity also now and discuss [5 points].

1



(3) Diagonal system and thermal environment: Let us consider a multi-state (in-
dexed by k) system with an environment of M harmonic oscillators 1, with Hamiltonian
Ĥ = ĤS + Ĥint + ĤE using

ĤS =
∑
k

ϵk| k ⟩⟨ k |,

Ĥint =
∑
k

κk| k ⟩⟨ k | ⊗ Êk,

ĤE =
M∑
n=1

ℏωnb̂
†
nb̂n. (3)

where Êk can be expressed as some function of the b̂n and b̂†n.

(3a) Show that the Hamiltonian is block-diagonal in terms of | k ⟩. [1 point]

(3b) Write the thermal state density matrix ρ̂E,T for the environment at temperature T ,
in terms of many-body oscillator states |n ⟩ ≡ |n1, n2, · · · , nM ⟩. [1 point]

(3c) Let |Ψk,n(t) ⟩ be the many body state of system and environment that arises through
time evolution (using Schrödinger’s equation) from the initial state |ϕk;n(0) ⟩ = | k ⟩⊗|n ⟩.
Then show that a density matrix of the form

ρ̂(t) =
∑
k,k′

∑
n

pn

[
ckc

∗
k′|Ψk,n(t) ⟩⟨Ψk′,n(t) |

]
, (4)

fulfills the von-Neumann equation (3.2)2 from the separable initial state ρ̂(0) =
|ψS(0) ⟩⟨ψS(0) | ⊗ ρ̂E,T , where the initial system state is |ψS(0) ⟩ =

∑
k ck| k ⟩. Deter-

mine pn. [4 points]

(3d) Derive the reduced density matrix ρ̂S for the system only, similar to the discussion
in section 3.1.4. Suppose there initially was a coherence between two system basis-states,
say k = 0 and k′ = 1. Inspect the coherence matrix element ⟨ k |ρ̂S| k′ ⟩ and discuss un-
der which conditions this coherence might disappear? Does it always? Which part of the
Hamiltonian decides if it does? How can you interpret the

∑
n pn part? [4 points]

1Just to be definite, the discussion works for any environment.
2Maybe start by showing that one.
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