
Week 8
PHY 435 / 635 Decoherence and Open Quantum Systems
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.5 Spin Decoherence

In section 4.4 we have applied the concepts of section 4 to the oscillator-oscillators model of section 2.
We now do the same for the spin-oscillators model / Spin-Boson model.

4.5.1 Master equation for Spin-Boson model

Compared to our earlier treatment in section 2.2.1 we will at first not making the simplification
�
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= 0. The complete Hamiltonian is then (~ = 1):
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⌘
, (4.58)

Since the environment of the Spin-Boson model is the same as that for quantum Brownian mo-
tion, our results from section 4.4 regarding environmental correlations functions and noise Kernels,
e.g. Eq. (4.32) and (4.36), can all be used here too.

What changes is mainly the system evolution, which we require in order to assemble the Ŝ(I)(⌧)
piece of the Master equation. We have Ŝ = �̂z and hence

Ŝ(I)(⌧) = �̂z(⌧) = ei
ˆHS⌧ �̂ze

�i ˆHS⌧ = e�i�0�̂x

⌧/2�̂ze
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Eq. (4.60)
= �̂z(0) cos (�0

⌧)� �̂y(0) sin (�0

⌧). (4.59)

Expression such as (4.59) occur frequently in the quantum dynamics involving spins and can be
dealt with using the

66



Spin rotation formula: (related to Rodrigues’ rotation formula)

eia(ˆn·�)�e�ia(ˆn·�) = � cos (2a) + (n̂⇥ �) sin (2a) + n̂(n̂ · �)(1� cos (2a)), (4.60)

where n̂ is a unit vector that can be thought of as a rotation axis, and 2a a number that
can be thought of as a rotation angle around that axis. � = [�

x
,�

y
,�

z
]T is a vector of

Pauli matrices. The formula then gives the e↵ect of that rotation on the cartesian spin
components.

• To apply (4.60) to (4.59) (exercise) we only look at the z component of the transformed
Pauli-vector, and set a = ��

0

⌧/2 and n̂ = î (unit vector along x axis).

We can also recycle (4.37) from section 4.4 and just replace Ŝ with �̂z. Then we insert (4.59) do
some extensive re-arrangements, and reach the

Born-Markov master equation for the Spin-Boson model (with !
0

= 0):

d

dt
⇢̂S(t) = �i

�
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where all operators without time argument are at t = 0. The Lamb-shifted Hamiltonian is
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and the coe�cients are

⇣ = f̃ � i�̃, (4.63)

D̃ =

Z 1

0

d⌧ ⌫(⌧) cos (�
0

⌧), (4.64)

f̃ =

Z 1
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d⌧ ⌫(⌧) sin (�
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⌧), (4.65)

�̃ =

Z 1

0

d⌧ ⌘(⌧) sin (�
0

⌧). (4.66)

• We use .̃.. on the coe�cients to make apparent that they are not quite the same as we had
for quantum Brownian motion.

• Since ⇣ 2 C in general, Ĥ 0
S may no longer be Hermitian.

• The D̃ term already explicitly takes the Lindblad form as in Eq. (4.25). This is the most
important term. To see its function, let’s look at it in detail:
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4.5.2 Decoherence in the Spin-Boson model

Luckily, with the simplification �
0

= 0 all coe�cients in (4.61) drastically simplify, and we find
f̃ = �̃ = 0 and D̃ =

R1
0

d⌧ ⌫(⌧) =
R1
0

d⌧
R1
0

d!J(!) cos (!⌧) (for T = 0). Using similar arguments

about repeated cosine transform as we did below Eq. (4.56), we finally can write D̃ = ⇡
2

J(0). Since
e.g. for the Ohmic spectral density this would be zero, let’s rather take it as ”lowest frequency
contributions to the spectral density”.

The Eq. (4.61) becomes
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ĤS , ⇢̂S(t)

⇤
� D̃

⇥
�̂z,

⇥
�̂z, ⇢̂S(t)

⇤⇤
. (4.67)

For ĤS = 0, we an write the entire (4.67) in 2⇥ 2 matrix notation, and find:

d

dt


⇢""(t) ⇢"#(t)
⇢#"(t) ⇢##(t)

�
= �4D̃


0 ⇢"#(t)

⇢#"(t) 0

�
, (4.68)

which immediately yields ⇢"#(t) = ⇢"#(0) exp [�D̃t]. We thus see that that coherences are exponen-
tially damped with rate D̃. We can interpret this decoherence as arising because the environment
”measures” the observable Ŝz via dynamics as shown in the example of section 2.2.1. Thus coher-
ences in the basis | " i, | # i are exponentially damped.

Numerical solution of Spin-Boson ME: without any simplifications. We can use a
matrix representation ⇢S,nm for the reduced density matrix ⇢̂S(t) =

P
nm ⇢S,nm(t)|n ihm | of

the spin, where |n i and |m i 2 {| " i, | # i}, and derive equations of motion @
@t⇢S,nm(t) = · · ·

from (4.61) (assignment). These can then be solved without any further simplifications.

0 1 2 3 4 5
t

0

0.2

0.4

0.6

0.8

1

p

populations
p
p

0 1 2 3 4 5
t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

p

coherences
Re[ , ]
Im[ , ]

left: Results of Eq. (4.61) for ⌦
0

= (2⇡),
D̃ = (2⇡)/10 and ⇣ = (2⇡)(0.05 + i0.03).
We see initially coherent spin-oscillations
due to ⌦

0

> 0, which are progressively
decohering, governed by 4D̃.

We can do the same explicit expansion for the remaining terms in (4.61) and find:

d

dt


⇢""(t) ⇢"#(t)
⇢#"(t) ⇢##(t)

�
= · · ·+


0 �2i[⇣⇢""(t) + ⇣⇤⇢##(t)]
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�
, (4.69)

where · · · stands for pieces already discussed earlier. The e↵ect of these terms is less obvious, they
may even counteract decoherence.
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4.6 Spontaneous decay

Now let us shift our attention to the two level atom interacting with a quantized photon field,
that we had introduced in section 2.2.2. Since each photon mode is mathematically equivalent to
a harmonic oscillator, and our two-level atom is equivalent to a spin-1/2 system, this falls into the
category of system: spin - environment: oscillator.

We had already decomposed the Hamiltonian appropriately in (2.17)-(2.19). We do a slight modi-
fication (see changed version) and then let us only cast the interaction Hamiltonian into our usual
form (~ = 1):

Ĥ
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We follow the usual steps to obtain a Born-Markov ME, so we first require the environmental
correlation function. We shall assume the photon-field to be in the thermal state (4.27), which can
describe the vacuum for T ! 0 and otherwise incorporates black-body radiation at temperature T .

As before, the ladder operators in the interaction picture are simply â(I)n⌫ (t) = ân⌫(0)e�i!
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t. This
yields the correlation function
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gn⌫ ân⌫(0)e

�i!
n⌫

⌧ + g⇤n⌫ â
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For the second line we used that photon modes with n⌫ 6= n0⌫ 0 are uncorrelated in state (4.27),
and that it is a mixture of number states. For the last line we have again made use of the
thermal population Nn⌫(T ) of mode n⌫ at temperature T .

Next also we require the interaction picture evolution of the system operators, and find:
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In a final step, we combine the correlation function and Ŝ(I)(t) into decoherence operators B̂, Ĉ
and find:
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We now use the

Cauchy principal value:
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◆
. (4.74)

This expression has to be thought of being applied onto a test function f(!) and then

integrated over, then
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We also convert
P
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d!⇢(!), where ⇢(!) is the photon density of states [i.e. the number of
photon modes in a small frequency interval [!,! + d!]]. Ignoring the principal value part for the
moment, we then arrive at
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In the second line we have already discarded two terms containing a delta function like �(! + !ge)
that cannot be fulfilled since all frequencies are positive, and in the third applied the remaining
delta-functions. Similarly we find:
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We finally insert (4.75) and (4.76) into (4.21), calculate lots of commutators and re-arrange. After
the dust settles, we have the

Master equation for a two-level atom in a quantum radiation field

d

dt
⇢̂S(t) = �i

⇥
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Ĥ 0
S =

⇣
~!

eg

2

+�E
⌘
�z, where �E is a Lamb-shift from the P parts glossed over above.

• Eq. (4.77) is of the Lindblad form (4.24), with two operators L̂µ 2 {�̂
+

, �̂�}.

• The first line, where L̂ = �̂�, describes spontaneous decay and stimulated emission of the
atom. The term is non-zero even in vacuum T = 0, and detailed inspection of Eq. (4.77)
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(in the example below), reveals that this part redistributes population from the upper to the
lower state.

• Hence the second line, where L̂ = �̂
+

is due to absorption of the incoherent black-body
radiation.

• In Eq. (4.77) only the radiation density exactly on resonance a↵ects the atom. This cannot
be the full story and is an artefact of the Markov approximation used.

Example I: Decoherence of Rabi oscillations / Optical Bloch equations:
left: Consider an additional coherent laser field driving tran-
sitions from | g i to | e i as shown on the left. It turns out
(PHY402), this can be described by an e↵ective system (atom)
Hamiltonian

ĤS =
⌦

2
�̂x �

�

2
�̂z. (4.78)

Since the atom can spontaneously decay while being illuminated
by the laser, we solve (4.77) for T = 0 usinga the Hamiltonian
(4.80).

a Technically, since we changed the system Hamiltonian, we also ought to
re-derive the ME, since the system operator evolution (4.72) will be di↵er-
ent now. We don’t, since spontaneous decay involves the energy/time scale
defined by !

ge

⇠ 500THz, which is much larger/faster than ⌦, � ⇠ MHz,
GHz. So we can first find the e↵ect of spontaneous decay as discussed in
section 4.6, and then add the slow system evolution later.

Written explicitly in terms of elements of the density matrix, we then find:
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�

+ �[N!
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2

⇢eg �⇢ee

�
+ �N!
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�⇢gg �1

2

⇢ge
�1

2

⇢eg ⇢gg

�
(4.79)

On the rhs, we have separated o↵ the unitary part from �i
⇥
ĤS , ⇢̂S(t)

⇤
from the part re-

lated to spontaneous decay. We see that (4.81) can simultaneously describe coherent driv-
ing and incoherent decay of the atom, as well as incoherent excitation by BBR. The sec-
ond line corroborates our interpretation given earlier. For T = 0, (4.81) are called the
optical Bloch equations.

71



Example I continued:
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Two exemplary numerical solutions of (4.81) for � = 0 and N!
eg

(T ) = 0 are shown on the
top. The left one has ⌦ = (2⇡), � = (2⇡)/10, so Rabi oscillations are seen but decohere on a
time-scale 2⇡/�. The right one is for ⌦ = (2⇡), � = 4(2⇡), where no oscillations are visible
but some equilibrium is reached quickly.

Example II: Coherent versus incoherent two-photon transition to Rydberg
states:

left: Now we extend the earlier example by a second follow-up
laser transition from the excited state | e i to an even higher ex-
cited state | r i. If | r i is a Rydberg state (e.g. principal quantum
number n = 80, see PHY 402), it makes sense to assume that
| r i does not spontaneously decay, only | e i does, as shown in the
figure.
The e↵ective system (atom) Hamiltonian for this case is

ĤS =
⌦
1

2
(| e ih g |+ | g ih e |)��

1

| e ih e |

+
⌦
2

2
(| r ih e |+ | e ih r |)� (�

1

+�
2

)| r ih r |. (4.80)

If we include the decay of the middle level | e i (we now take N(T ) = 0, i.e. T = 0) via the
derived Lindblad operator �̂� ! | g ih e |, we find the three-level optical Bloch equations:

⇢̇gg = �⇢ee + i
⌦
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2
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⇢̇ee = ��⇢ee � i
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⌦
2

2
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⇢̇rr = +i
⌦
2

2
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2
⇢ge + i

⌦
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2
(⇢gg � ⇢ee) + i

⌦
2

2
⇢gr � i�

1

⇢ge,
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⌦
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2
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⌦
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2
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)⇢gr,
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2
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⌦
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2
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⌦
2

2
(⇢rr � ⇢ee)� i�

2

⇢er. (4.81)
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Example II continued:
As before we can solve these numerically:
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(left two panels) Populations and coherences for ⌦
1

= ⌦
2

= (2⇡)5 and �
1

= ��
2

=
(2⇡)100. Hence �

1

+ �
2

= 0 and the two-photon transition is resonant for | g i $ | r i.
However since |�k| � |⌦k|, we say that this transitions is proceeding o↵-resonantly via | e i.
Thus population in | e i and thus spontaneous decay and decoherence can be kept small.
This is used in experiments in practice to create coherent transitions between ground- and
Rydberg states using two lasers.
(right two panels) Populations and coherences for ⌦

1

= ⌦
2

= (2⇡)5 and �
1

= �
2

= 0.
Now we proceed resonantly via the middle level. As a result excitation is strongly decohered
by spontaneous decay.

Example III: Adiabatic Elimination:
Let us understand the coherent coupling in example II using adiabatic elimination. In the
equations for ⇢̇ge the by far largest term on the rhs is �i�

1

⇢ge. This will cause the complex
number ⇢ge to very quickly rotate. If we coarse grain in time, this allows us to actually set
⇢̇ge = 0. Warning: The implication is confusingly not that it varies too slowly, but rather
too fast. We can then solve the resultant algebraic equation, using also �

1

� � to yield:

⇢ge ⇡
⌦
1

2�
1

(⇢gg � ⇢ee) +
⌦
2

2�
1

⇢gr. (4.82)

Similarly for ⇢̇er we find

⇢er ⇡ � ⌦
2

2�
2

(⇢rr � ⇢ee)�
⌦
1

2�
2

⇢gr. (4.83)

Inserting these into the remaining equations gives (assuming ⇢ee ⇡ 0)

⇢̇gg = +i
⌦
e↵

2
(⇢gr � ⇢rg),

⇢̇rr = +i
⌦
e↵

2
(⇢rg � ⇢gr),

⇢̇gr = i
⌦
e↵

2
(⇢gg � ⇢rr), (4.84)

where ⌦
e↵

= ⌦1⌦2
2�1

takes the place of an e↵ective Rabi frequency of our coherent two-photon
transition. The corresponding Rabi period is T

rab

= 2⇡/⌦
e↵

= 8 for example II, matching
the observation in the left-most panel.
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4.7 Steady states of a Master equation

The second example above shows a phenomenon that frequently happens when dealing with Master
equations: At some time the dissipative or decohering terms have established a steady state, where
none of the density matrix element change any more. Often this is of major interest, particularly
if the time it takes to establish it (called the “transient“) is too short to be interesting for us.
Mathematically we can define a

Steady state of a Master equation simply by demanding

d

dt
⇢̂(t) = 0, and Tr[⇢̂(ss)] = 1. (4.85)

We call the solution of this ⇢̂(ss), for “steady state“.

This can often be solved much easier than the actual ME, since it is just an algebraic equation.

Example: Steady state of the driven atom:
Let us apply the concept to the example earlier. We combine Eq. (4.85) with Eq. (4.81),
hence we just set the lhs of Eq. (4.81) to zero and solve the resultant system of algebraic

equations including ⇢(ss)gg + ⇢(ss)ee = 1. We find (for � = 0)

⇢(ss)gg =
�2 + ⌦2

�2 + 2⌦2

, ⇢(ss)ee =
⌦2

�2 + 2⌦2

,

⇢(ss)ge =
i�⌦

�2 + 2⌦2

, ⇢(ss)eg =
�i�⌦

�2 + 2⌦2

. (4.86)

These values match with the steady simulation results found in example-I earlier.
The same could be applied to example-II, right panels, to find the equilibrium populations
of all the levels (exercise).
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