
Week 3
PHY 435 / 635 Decoherence and Open Quantum Systems
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3 Basic Formalism and Interpretation of Decoherence

In the following we want to proceed with the aim sketched in section 1: to develop a formalism
that allows us to deal with the system (S) part of the models introduced in section 2 only, and find
a way to e↵ectively take into account the influence of the environment E.

For that we have to revise/ introduce the concept of....

3.1 Density matrices

3.1.1 Pure state density matrices and the trace operation

So far we are mainly used to describe a quantum system in terms of the (pure) state vector
| i =Pn cn|�n i, where the sum denotes its decompositions in terms of some arbitrary Hilbert-
space basis B = {|�n i}. Alternatively we can write the

Density matrix/ Density operator defined as the projection

⇢̂ = | ih | =
X

nm

cnc
⇤
m|�n ih�m |. (3.1)

• The corresponding matrix ⇢ has Matrix elements ⇢nm = cnc⇤m.

• The elements on the diagonal are ⇢nn = pn = |cn|2, called populations (see QM-1/2).

• The o↵-diagonal element ⇢nm = cnc⇤m is called coherence between states n and m.

We can also formulate quantum time-evolution as in section 1.5.5 for density matrix, it is then
governed by the
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Von Neumann equation

d

dt
⇢̂(t) = � i

~
⇥

Ĥ(t), ⇢̂(t)
⇤

. (3.2)

Examples – Coherences indicate superpositions: I↵ the state | i contains a quan-
tum superposition of basis elements |�a i and |�b i, such as | i = 1p

2

(|�a i+ |�b i), the
coherence ⇢ab will be nonzero (in this case ⇢ab = 1/2). Note, however, that the state-
ment wether or not there is a superposition, and whether or not a coherence is non-zero
depends on the choice of basis:

Consider the spin state: | i = 1p
2

(| " i+ | # i), in terms of the basis B = {| " i, | # i}

⇢ =



1

2

1

2

1

2

1

2

�

” = ”
1

2

✓

| " ih " |+ | # ih # |+ | " ih # |+ | # ih " |
◆

, (3.3)

with non-vanishing coherences. We also illustrate the two notations that we intend to use:
the Matrix representation of the density operator (left) and the operator form (right).
We can express ⇢̂ instead in the basis B = {| i, |!i} (eigenstates of �x), we have

⇢ =



1 0
0 0

�

” = ”| ih |, (3.4)

with no coherences.

We also introduce the

Trace operation As known from matrices this is the sum of all diagonal elements of an
operator

Tr[Ô] ⌘
X

k

h�k |Ô|�k i. (3.5)

where B = {|�n i} is any orthonormal basis of the Hilbertspace.

• This definition is independent of the choice of B.
• We have introduced it in order to write the expectation value of an operator Ô with Ô|�k i =

ok|�k i in a quantum state | i =Pn cn|�n i as
hÔi = Tr[Ô⇢̂] =

X

k

ok|ck|2. (3.6)

This expression is known from using state vectors | i.
• The trace is linear Tr[Â+ B̂] = Tr[Â] + Tr[B̂] and cyclic Tr[ÂB̂Ĉ] = Tr[B̂ĈÂ].

Proof of all of this: exercise.
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3.1.2 Mixed state density matrices

Let us revisit the

Stern-Gerlach experiment: undertaken in 1922 to explore the quantization of angular
momentum, see figure below. The Ag atom angular momentum is just given by the valence
electron spin, hence s = 1/2. The magnetic moment of the atom due to the electron is
µ̂ = �gsµBŜ/~, in an inhomogeneous magnetic field this yields a Force F̂ = �r[�µ̂ · B].
With magnetic field and inhomogeneity along z we reach, all up: Fz = �gsµBŜz

@
@zBz.

left: A beam of silver atoms is directed
through a region of inhomogeneous magnetic
field. The resultant di↵erent forces experi-
enced by | " i and | # i atoms split the beam
up into only two discrete spots. The device

has thus demonstrated quantisation of Ŝ and
measured the value of Ŝz for each atom.

• Importantly, the spin-component which is being measured is decided by the direction of the
magnetic field and its gradient. If we had oriented the field along x, we would obtain two
left-right split dots corresponding to atoms in | i, |!i (see section 1.5.2).

• Let us try to formally describe the situation in the figure above, where each atom from a
thermal source is randomly in either the | " i or | # i state with 50% � 50% probabilities.

Which state would we assign to such an atom? We could try | i = (| " i + | # i)/p2, which
would give the correct probabilities for a measurement of Ŝz (50/50).

• However what if we measure Ŝx instead? We recognise the state above as | i, eigenstate of
Ŝx. Thus if we measure Ŝx instead of Ŝz, we would get +1/2 with 100% probability. However,
since we said atoms are with 50%� 50% change in | " i or | # i and | " i = (| i+ |!i)/p2,
| # i = (| i� |!i)/p2, we should in fact get Sx = +1/2,�1/2 with 50%� 50% probability
for each atom. How can we write a state that describes both measurements, Ŝx and Ŝz

correctly?

• This example points to essential di↵erences in uncertainties in quantum mechanics and clas-
sical mechanics.

The tool to describe both types of uncertainties in one unified formalism are density matrices as in
section 3.1.1, which is in fact why we introduced them.
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We now define the

Mixed state density matrix

⇢̂ =
X

n

pn|�n ih�n |, (3.7)

Here �n is an orthonormal set of states and pn the classical probability to be in state n.

• We have
P

n pn = Tr[⇢̂] = 1, expressing normalisation of our state.

• We recognize (3.1) as a special case with pn = �nk for some k.

• Consider now the expectation value of an operator

hÔi = Tr[Ô⇢̂] =
X

n

h�n |[Ô
X

m

pm|�m i h�m |]|�n i
| {z }

=�
nm

=
X

n

pnh�n |Ô|�n i (3.8)

This takes into account both, the classical and quantum mechanical formalism for uncertain-
ties and determining an average.

Spin mixture example:
Let us apply this to the spin mixture problem discussed on the previous page. We define the
state of atoms in the oven via the density matrix ⇢̂ = (| " ih " |+| # ih # |)/2, implying we simple
have no knowledge of which spin state they are in, but that there is no superposition of " + #.
Then

hŜxi = Tr[Ŝx⇢̂]
Eq. (3.9)

= (h " |Ŝx| " i
| {z }

=0

+ h # |Ŝx| # i
| {z }

=0

)/2 = 0, (3.9)

as required since we will find Ŝx = +1/2,�1/2 with equal probability. Equally we also find
hŜzi = 0.

• This sort of mixture is also called proper mixture, and can represent a system that is in a
pure state, but we don’t know in which. The mixture is due to our ignorance. We will learn
about improper mixtures shortly.

• For this interpretation we need to know additionally that the system is in a certain set of
pure states. For example we can write the density matrix in the example above equally well
as ⇢̂ = (| ih | + |!ih! |)/2 (exercise), which we would get when saying the system is
always either in | i or |!i. Given only the density matrix as a mathematical object we
cannot distinguish the two scenarios. This means measurements cannot distinguish between
the two.
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• The density matrix just introduced also plays a central role in quantum statistical physics,
where we use it with pn = exp [�En/(kBT )] to describe a statistical ensemble at temperature
T . Alternatively one could describe a quantum ensemble of identical systems also in a pure
high-dimensional Hilbertspace (see SD 2.4.5). For ensemble averages both approaches give
the same results.

Even though they have the same populations in the basis {|�n i}, a mixed state ⇢̂ as in (3.7) is
very di↵erent from the pure state | i =Pn

p
pn|�n i. We have seen this in the above discussion

of measurements on a state | i and on the density matrix ⇢̂ = (| " ih " |+ | # ih # |)/2.

To quantify this di↵erence, we introduce two measures3:

Purity

⇣(⇢̂) = Tr[⇢̂2] (3.10)

We can see ⇣ = 1 if ⇢̂ is a pure state density matrix (3.1), but ⇣ < 1 for genuine mixed states
(3.7).

• For maximally mixed states ⇢̂ =
PN

n 1/N |�n ih�n |, we have ⇣ = 1/N .

• The definition exploits that ⇢̂2 = ⇢̂, ⇢̂ is a pure state density matrix.

An alternate measure to quantify the degree of ”mixedness” of a quantum system is the

Von-Neumann Entropy defined as

S(⇢̂) = �Tr[⇢̂ log
2

⇢̂] ⌘ �
X

k

�klog
2

(�k). (3.11)

The �k are the non-zero eigenvalues of ⇢̂. We can see S = 0 if ⇢̂ is a pure state density matrix
(3.1), but S > 0 for genuine mixed states (3.7).

• For pure states only one eigenvalue is non-zero and equal to unity.

• For a maximally mixed state (see above), we have all �k = pk = 1/N and thus S = log
2

(N),
which is the maximum allowed value.

3.1.3 Reduced density matrices

In the previous section we saw how the density matrix concept helps us to incorporate at the same
time uncertainties due to quantum e↵ects and to classical randomness. We now see that it also is
a useful tool for the objective stated at the outset of this section: To deal with S only, without E.

3
many more exist
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Let BS = {|�k i} and BE = {|'k i} be two bases for system and environment and Ô = ÔS ⌦ 1 an
operator that acts on the system only.

Let us denote with |�k,'l i = |�k i⌦|'l i and element of the complete basis (system+environment).

Any information on the system, via measurements on it only, can be obtained from operators of
that form.

Now note:

hÔi = Tr[⇢̂Ô]
Eq. (3.5)

=
X

kl

h�k,'l |⇢̂(ÔS ⌦ 1)|�k,'l i

=
X

k

h�k |
 

X

l

h'l |⇢̂|'l i
!

ÔS |�k i ⌘
X

k

h�k |TrE [⇢̂]ÔS |�k i

⌘
X

k

h�k |⇢̂SÔS |�k i = TrS [⇢̂SÔS ]. (3.12)

In the second equality we used that Ô does not act on states |'l i. Here we have introduced the

Reduced density matrix of the system

⇢̂S = TrE [⇢̂], (3.13)

where TrE [Ô] =
P

lh'l |⇢̂|'l i is the partial trace over the environment.

• The quantity ⇢̂S gives all the information that we can possibly gain from measurements on the system alone.
Importantly this excludes measurements that jointly determine the environmental states. We
assume those are not possible.

• Let’s look at some examples for a spin-spin model (section 2.3), where we chose just two
environmental spins for simplicity:

Example 1: Suppose system and environment are in a separablea state: | i = 1p
2

(| " i+
| # i) ⌦ 1p

2

(| "" i + | ## i). States before ⌦ refer to the system, after ⌦ to the environment.

This expands to | i = 1

2

(| """ i+ | #"" i+ | "## i+ | ### i), somewhat hiding the separability.
We now perform the partial trace over the environment after converting this to a density
matrix.

⇢̂S = TrE [⇢̂] =
X

s1,s2

h s
1

s
2

|⇢̂| s
1

s
2

i, (3.14)

a
wrt. the system-environment splitting. The environment part is actually entangled.
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Example continued: ...where in the first step spin indices s
1

, s
2

run over ", # each, and
we have used the ”placeholder” to visualize the fact that the scalar products involving
environmental spins act on the last two spin indices only.

We arrive at (exercise)

⇢̂S =



1

2

1

2

1

2

1

2

�

” = ”
1

2

✓

| " ih " |+ | # ih # |+ | " ih # |+ | # ih " |
◆

, (3.15)

which we recognise as in (3.3) as the density matrix for the pure system state | S i =

(| " i+ | # i)/p2.
We can evaluate the purity (3.10) (exercise) and find P = 1 as expected.

Example 2: Now consider a state where the system is entangled with the environment:

| i = 1p
2

(| " i⌦ | "" i+ | # i⌦ | ## i). Following the same procedure as in example 1 we reach:

⇢̂S =



1

2

0
0 1

2

�

” = ”
1

2

✓

| " ih " |+ | # ih # |
◆

, (3.16)

the mixed state already given in (3.4). The purity in this case is given by P = 1/2, the
minimum allowed in a two-dimensional Hilbertspace.

• In the examples above we have seen that a reduced density matrix can frequently take the
form of a mixed state. Unlike those in section 3.1.2 these are called improper mixtures. The
interpretation is not that the system is in a pure state but we don’t know which, but rather
that the ”system+environment” are together in a complicated entangled pure state, which is
such that local measurements on the system alone are indistinguishable from the those in a
proper mixed case that would be based on ignorance.

• It can be shown that, assuming a pure total state, i↵ the system and environment are sepa-
rable, the reduced system state will be pure.

Example 3: Finally let’s look at yet one more example: | i = 1p
2

(| " i ⌦ (c
1

| "" i +
c
2

| ## i) + | # i ⌦ (c
2

| "" i+ c
1

| ## i)), with |c
1

|2 + |c
2

|2 = 1 . Note, that for c
1

= 1, c
2

= 0 this
co-indices with example 2, and for c

1

= c
2

= 1/
p
2, system and environment are separable,

as in example 1.
For the state in this example 3, we find

⇢̂S =
1

2



1 c
1

c⇤
2

+ c⇤
1

c
2

c
1

c⇤
2

+ c⇤
1

c
2

1

�

” = ”
1

2

✓

| " ih " |+ | # ih # |+ 2Re[c
1

c⇤
2

]
�| " ih # |+ | # ih " |�

◆

,

(3.17)

with purity P = (1 + 4Re[c
1

c⇤
2

]2)/2.
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Example 3 continued: Thus the purity depends on c
1

, c
2

, and in general represents a
not-maximally entangled system-environment, of relevance in the following. We can get all
purity values in between the maximum (1) and minimum (1/2).

3.1.4 Local Measurability of Interference and Distinguishability

We now address how the measurability of interference locally in the sytem depends on the structure

of its entanglement with some environment. First note that the measurement of Ŝx alluded to in
section 3.1.2 ”proves” the existence of a coherent superposition | i = c

1

| " i + c
2

| # i though an
interference type measurement: the fraction measured in msx = �1/2 is |h! | i|2 = |c

1

�c
2

|2/p2,
vanishing only due to the coherence. For this interference to be measured, the coherences in the
density matrix must be non-zero.

Consider the generic bi-partite state

| i = 1p
2

✓

|�
1

i ⌦ |�
1

i+ |�
2

i ⌦ |�
2

i
◆

, (3.18)

with states |� i for the system and |� i for the environment. We do not assume the |�k i to be
mutually orthogonal. The density matrix can be written as ⇢̂ = 1

2

P

2

ij |�i ih�j |⌦ |�i ih�j |.

To find the reduced density matrix of the system, we do require an orthonormal basis of the

environment, let that be {|' in}. We can thus expand |�
1,2 i =

P

l c
(1,2)
l |'l i. Using Eq. (3.5) we

obtain:

⇢̂S = TrE

0

@

1

2

X

ij

|�i ih�j |⌦ |�i ih�j |
1

A

=
1

2

X

ij

|�i ih�j |
X

k

h'k |
 

X

ll0

c(i)l c0(j)⇤l |'l ih'0
l |
!

|'k i

=
1

2

X

ij

|�i ih�j |
X

k

c(i)k c(j)⇤k =
1

2

X

ij

|�i ih�j |h�j |�i i

=
1

2

✓

|�
1

ih�
1

|+ |�
2

ih�
2

|+ |�
1

ih�
2

|h�
2

|�
1

i+ |�
2

ih�
1

|h�
1

|�
2

i
◆

. (3.19)

We see several generic consequences of the bi-partite (in general entangled) state (3.18):

• If the environmental states |�
1,2 i were fully distinguishable (orthogonal, h�

2

|�
1

i = 0), then
there is no coherence between |�

1,2 i in the reduced system (see example 2).

• If they were identical (h�
2

|�
1

i = 1) we had in fact a separable state and there is full
coherence.

• In more general cases, the amount of coherence left in the system depends on the overlapp
(distinguishability) of the states |�

1,2 i (example 3).

31


