
Week 2
PHY 435 / 635 Decoherence and Open Quantum Systems
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2 System environment models

In this section we list mathematical system-environment models that could describe most of the
examples in section 1.2. We will follow the classification of SD, chapter 5: An essential distinction
that can be made for both, the system and environment, is whether it is described by a continuous
or a discrete coordinate. A continuous system is then treated like a quantum harmonic oscillator
and a discrete one like a spin-system. This provides a total of four possible ”canonical models”.

The aim of this section is to supply hands on examples for the remainder of the course. You will
have to be patient for the full solution of these models in terms of open quantum systems, until
much later.

• The classification above is for guidance only, there are more di↵erent open quantum systems
since their behaviour also strongly depends on the details of the system-environment coupling
Ĥ

int

.

2.1 Quantum Brownian Motion and damped Harmonic Oscillator

• Classification: System – one oscillator, environment – many oscillators.

left: Consider a central (heavy) harmonic oscillator as
the system, that is weakly coupled to a pool of other
(light) oscillators, as shown in this figure. We schemati-
cally also show the presence of couplings, please refer to
equations for the actual details.
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We thus write the system and bath part of the Hamiltonian as
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in terms of position and momentum operators (capital letters = system oscillator, small letters =
environment oscillators).

We also assume quadratic coupling terms Ĥ
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=
P
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(X̂ � q̂i � d
eq,i

)2. In the end, the only term
from expanding the square that interest us is the linear coupling term, thus we just set:
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• We write ⌦ to highlight the splitting into operators acting on the system versus acting on
the environment (S ⌦ E).

• All other terms from expanding (X̂ � q̂i � d
eq,i

)2 simply redefine frequencies, equilibrium
positions and the zero of energy for all oscillators involved, hence they are skipped.

• For the case of a general system potential V (X̂) instead of the harmonic one 1

2

M⌦2X̂, the
model of this section is called the Caldeira-Leggett model.

We now rewrite all operators in (2.1)-(2.3) by ladder operators as in (1.20), using b̂, b̂† for the

system and âi, â
†
i for the environment, and arrive at our final

Quantum Brownian motion Hamiltonian in the energy basis
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• The new interaction constant is ̄i = i
q
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q
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, which you see by inverting (1.20) to

give e.g. X̂ =
q
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⌘

.

• An important feature of (2.3) is the possibility of dissipation: It contains terms such as b̂â†i ,
which removes an energy quantum from the system oscillator and gives it to the environment.

• Heating on the other hand is also possible, through the cc. term b̂†âi. To find out which will
prevail, see later sections.
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Basis: As in (1.24) we can use oscillator quantum numbers n to define a basis for both,
the system (basis B = {|n i}) and the environment (basis B = {|m

1

,m
2

, . . . ,mN i}). The
compound basis for system+environment is thus B = {|n;m

1

,m
2

, . . . ,mN i}. Note {..}
means ”set of...”.

2.2 Spin boson model

• Classification: System – one spin, environment – many oscillators.

We now change the system from the previous section to have a more complex potential V (x) with
two local minima, see below. However we then make it simpler again, by assuming the dimen-
sion X to be e↵ectively frozen, with only two possible positions inside of the two local minima.

left: Damped double well system realization of the spin-
boson model. The system particle (blue ball) couples to
the environment oscillators (grey rods) as in section 2.1.
However it now feels a di↵erent potential V (x). We con-
sider energies where it can only reside in the left well,
with wavefunction 'L(x), or right well 'R(x). Identify-
ing 'L ⌘ | # i, 'R ⌘ | " i, we realize an e↵ective two-level
system or spin-1/2 system.

Simplifying the model into its standard form is more involved, but we eventually arrive at the
Hamiltonian below with system, bath and coupling Hamiltonians given by
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• ~!
0

is the energy di↵erence between the two system states, and ~�
0

their inter-state transition
amplitude (here tunnelling amplitude).

• See (1.16) for spin-operators / Pauli matrices.

• Note: These i have dimension [energy/length] as opposed to the previous section (2.2), where
it had [energy/length2].

• The bath is of the same structure as in section 2.1, but the coupling to it has changed.

18



left: A physical system that realizes the above is a defect atom (vio-
let) tunnelling in a solid crystal (brown), with crystal-phonons (green)
as bath of oscillators.

Further reading: Some derivation of the model can be found in ”Leggett et al.,
Rev. Mod. Phys. 59 1 (1987)”.
See WQD, chapter 3.2, for another concrete example realizing the spin-boson model: Flux
in an r.f. SQUID, in contact with a heat bath.

As before we can write this in terms of ladder operators to arrive at a final

Spin-boson model with system, bath and coupling Hamiltonians given by
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ĤE =
X

i

~!i

✓
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• Here ̄i = i
q

~
2m

i

!
i

.

• We will also consider the simplified case �
0

= 0, when the Hamiltonian Eq. (2.12) does not
include dissipation. We can see this since in that case

⇥

ĤS , Ĥint

⇤

= 0 (always
⇥

ĤS , ĤS,E

⇤

=
0)). Thus the interaction Hamiltonian can not cause a change in system energy.

2.2.1 Simplified Spin-Boson model

Let us look at a simple example of Spin-Boson dynamics in the case N = 1 (single oscillator) and
�

0

= 0. This can be solved analytically (5.3.1 SD) but with some technicalities. Let us describe
how a numerical solution would work and use diagrams!

The complete system has a basis {| ", n i = | " i ⌦ |n i, | #, n i = | # i ⌦ |n i, combining (1.15) and
(1.24). Thus | (t) i = P

s,n csn| sn i. Insertion of this into (2.10)-(2.10) gives equations of motion
ċsn. Importantly it turns out that none of the ċ",n are coupled to the ċ#,n, so we can solve the
two ”blocks” separately. That means we can ask separately ”what happens if the spin is in | " i?”,
”· · · | # i?.

19



Numerical solution of single-spin, single-boson model: Consider an initial-state
| (0) i = 1p

2

(| " i+ | # i)⌦ | 0 i. We can guess the evolution directly from (2.7)-(2.7):

left: For spin in state | " i we
have h " |Ĥ

int

| " i = q̂, while
h # |Ĥ

int

| # i = �q̂. In either case the
single oscillator feels a shifted har-
monic potential V

e↵

= 1

2

m!q2 ± q
as shown in the figure. However the
shift direction depends on the spin.
Starting in the ground-state of the
un-shifted potential, the oscillator
does harmonic motion while its
wave-function remains a Gaus-
sian. This represents a coherent
state. But the oscillator position
during this oscillation depends on
the state of the spin.

• If we denote by |↵q i a coherent oscillator state centered at q (think of it as ground-state
shaped Gaussian centered at q), then at the ”turning point” T shown in the figure the overall
state is

| (T ) i = 1p
2
(| " i ⌦ |↵Q� i+ | # i ⌦ |↵Q+

i) . (2.13)

• This is of the same structure as the cat-state (1.1), except the oscillator may still be micro-
scopic. But we can do the same calculation for N = 1023 oscillators with similar results (each
oscillator evolves into ”their own” coherent state).

• The creation of an entangled state (2.13) from a separable state | (0) i is at the heart of a
quantum measurement and decoherence.

• In subsequent sections we will frequently make reference to the kind of paradigmatic entangling
quantum evolution discussed above. We will refer to the evolution by

1p
2
(| " i+ | # i)⌦ | 0 i ! 1p

2
(| " i ⌦ |↵Q� i+ | # i ⌦ |↵Q+

i) , (2.14)

where ”A ! B” means Total state A evolves under unitary evolution of the coupled system
into total state B.

• See assignment 1 for many more details.

2.2.2 Two level atom

We also want to present the example of section 1.1 as an open-system Hamiltonian. To do that we
first have to introduce:
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QED in a (small) nutshell: In classical electro-dynamics, electric and magnetic field
follow from the vector potential A(x, t) and scalar potential '(x, t). In the Coulomb Gauge
the latter is zero. In quantum electro-dynamics (QED) the vector potential is given by an
operator

Â(x, t) =
X

n,⌫
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QED continued: This decomposes the field into modes with index n written as ei(kn

x�!
n

t)

with wavenumber kn, frequency !n = c|kn| within a quantization volume V. The index ⌫ is
for the polarisation, which is manifest in the polarisation vector en⌫ .
Most importantly each mode is described by operators ân⌫ , â

†
n⌫ that act like ladder operators

for the oscillator. The quantum states of the electro-magnetic field that these act on are
occupation number states |nanb · · · i, where each of the ni is the number of photons in a
mode n⌫.

Let us indeed simplify a single atom as in section 1.1 with considering only two electronic states
for it, a ground state | g i ! | # i and some excited state | e i ! | " i. We indicate here already how
we identify these two states with spin-states in this section.

You will learn/ have learnt in PHY402, that transitions between electronic states in an atom because
of electro-magnetic radiation are governed by the dipole matrix element

deg = h e |Â(x, t) ·r| g i. (2.16)

It turns out that using a few further approximation (rotating-wave and dipole approximations), we
can eventually write the e↵ective

Two-level atom Hamiltonian for interactions with the quantized electromagnetic field
following from (2.15) as:
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where ~!eg = Ee � Eg is the energy di↵erence of the two electronic states and gn⌫ =
�i !

eg

µ
egp

2~✏0!n

V , µeg = h e |ex| g i. We used �̂
+

= �̂x + i�̂y = | " ih # |, �̂� = �̂x � i�̂y = | # ih " |.

• Since the electro-magnetic field modes n⌫ function exactly like harmonic oscillators, this can
be classified as a spin system-with oscillator environment, appropriate for this section.
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• Comparison of (2.10)-(2.12) with (2.17)-(2.19) shows identical structure, except a changed
system-environment interactions Ĥ

int

.

• The obvious interpretation of its terms is that a photon gets absorbed and the atom excited
(ân⌫ �̂+ ) and the reverse.

• We will see later how this coupling of the atom to a quantum-electromagnetic field environ-
ment leads to spontaneous decay of the excited state | e i.

• In quantum optics for some cases all elm. field modes n⌫ except one can be ignored. In this
case the Hamiltonian above realizes the so called Jaynes-Cummings model.

Further reading: This section is based on Walls and Milburn ”Quantum Optics” 10.1.

2.3 Spin-spin model

• Classification: System – one spin, environment – many spins.

Finally we change to a picture where the environment is also given by a collection of spins. See the
exemplary system below.

left: Spin-spin environment model realized by an array of
optically trapped Rydberg atoms. Each atom is trapped
on a single 2D lattice site, so position dynamics is fully
suppressed. Atoms can be in a ground state | g i or Ryd-
berg state | r i. Under certain conditions (see PHY402) a
laser can drive transitions between these two states with
Hamiltonian Ĥ = ⌦

2

(| r ih g | + c.c.) ��| r ih r |, with pa-
rameters ⌦, � controlled by laser intensity and frequency.
We assume two distinguishable species of atom, system
(violet) and environment (brown). Only if two atoms
n,m are in a Rydberg state, they interact over large dis-
tances with: V̂ = nm[| r ih r |](n) ⌦ [| r ih r |](m) (operator
[· · · ](n) acts on atom n only.).

In such a case we can write a
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Spin-spin model with system, bath and coupling Hamiltonians given by
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Here CAPITAL Pauli matrices ⌃̂x,z act on the system spin, and lower case ones �̂x,z on
environmental spins.

• By �̂(i)
x we imply a Pauli matrix that only acts on spin number (i), i.e. �̂(2)

x | """ i = | "#" i.
• Spin-spin models are often good environmental models at low temperature, for example when

it is enough to consider the two lowest quantum states for each oscillator in Eq. (2.8).

• Detailed translation of the example above into (2.20)-(2.22): exercise! (Identify: | # i $ | g i,
| " i $ | r i.

2.4 Multi-component problems

The paradigmatic examples above are simpler than most real problems, in that the system part
has a clear single particle character (i.e. one oscillator or one spin). In practice of course S may be
a many-body system itself.

left: In the left figure of many coupled spins (violet and
gray), the size of green twiddles indicates the strengths of
mutual couplings. In this case it may be not fully clear if
we should choose our system as just the two inner spins
(S-II), or maybe all violet spins (S-I). This illustrates a
certain ambiguity in our system-environment splitting.
We will learn later, that this may even a↵ect the clas-
sification of the resultant open-system, i.e. S-II may be
Non-Markovian, while S-I is Markovian.

The formalisms you learn in the remainder of the lecture should be able to deal with both cases in
the caption above, and give identical answers when all their underlying assumptions are fulfilled.
However, the initisl classification of the open-system and thus methods to be used for them may
di↵er depending on whether choice I or II is made.
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