
Week 1
PHY 435 / 635 Decoherence and Open Quantum Systems
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

0 Administrative a↵airs

(i) O�ce: AB1 - 014
Phone: 1213
Email: sebastian@iiserb.ac.in
O�ce hours: Wednesdays 3 pm - 6 pm.
webpage: http://home.iiserb.ac.in/⇠sebastian/teaching.html

(ii) Literature:

• Schlosshauer, ”Decoherence and the quantum-to-classical transition” [SD]

• May, Kühn, ”Charge and Energy Transfer Dynamics in Molecular Systems” [MK]

• Weiss, ”Quantum dissipative systems”, 2nd ed. [WQD]

• Gardiner, Zoller, ”Quantum Noise” [QN]

• R. Shankar, ”Principles of quantum mechanics” [SQM]

• Agarwal, ”Quantum Optics ”

• Breuer and Petruccione, ”The theory of open quantum systems ”

The course will mainly follow SD, with MK for non-Markovian dynamics. Where stray topics
are taken from elsewhere I will try to indicate this.

(iii) Assessment:

• Three scheduled Quizzes with examineer: 15% To supplement the exams, there
will be three quizzes lasting one lecture hour, conducted using the examineer webpage
. These are ”open notes” quizzes, so bring a copy of your notes. Quizzes will be simpler
than exams, intended to encourage you to continuously keep on top of the material.
Make sure to bring an internet capable phone/tablet/laptop on the days of
the quizz. Please contact me if there is a problem with this. You also need
some pen and paper for scrap notes on quiz days.

– Quiz 1: Thu 23rd August (in lecture)

– Quiz 2: Tue 11th September

– Quiz 3: Thu 1st November
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• Flipped classroom / Assignments: 10% There will be about five assignments
handed out with a two week deadline each. I expect you to form teams of 3-4 stu-
dents and stick in these teams for the semester. Hand in only one solution per team.
The TA is instructed to give full marks for any serious attempt at a given question of
the assignment, even if the result is wrong. This is to discourage copying and encour-
age doing it yourself. Additionally however the TA is asked to deduct marks for messy
presentation and blatant copying.

• Flipped classroom participation: 5% In the middle of the two week assignment
period we will make one ”flipped class”: I will record the lecture as video provided
online and expect you to watch it in your usual ”homework time”. Instead of that
lecture we will spend the time with you working with your team on the assignment/
asking questions/ reviewing material. Participation in this class will be taken.

• Mid-Sem exam: 30%

• Final exam: 40% The exams will try to test understanding of the essential physics con-
cepts taught, not maths. For guidance regarding what are the most important concepts
look at the quizzes and assignments. All exams will be designed to give a significant
advantage to those students that solved all assignments by themselves.

1 Motivation and Review

1.1 What is an open quantum system?

• Split the world into a ”system” of interest S and an environment E.

• Fundamentally, both ought to be described quantum mechanically.

• Frequently we have a system that is simple/ describable, but an environment that is too large
to treat quantum mechanically (see section 2), and that we don’t even care about.

left: Essential building blocks of an open quantum sys-
tem in an example relevant for spontaneous emission:
A single atom, for which we consider only two quan-
tum states | g i and | e i is our sytem. It interacts
via its dipole with electromagnetic radiation (photons
�). This environment is more complex than the atom
(many elm. field modes, polarisations, occupations), and
is not empty even at T = 0. S and E interact via
system-environment interactions Ĥ

int

. We will later for-
malize this splitting on the level of the Hamiltonian by
writing Ĥ = ĤS + ĤE + Ĥ

int

.

• The theory of open quantum systems provides ways to approximately determine the evolution
of S, despite it being a↵ected by E through interactions Ĥ

int

, without having to fully deal
with E.
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• Besides the practical utility, the theory also provides us with fundamental insight into what is
called the ”quantum to classical transition”: Why does the everyday world around us behave
classically, even though all microscopic constituents behave quantum mechanically? This
problem is well illustrated by the Schrödinger’s cat thought1 experiment:

left: Schrödinger’s cat paradox. Suppose a nucleus is in
the grey box that radioactively decays with rate �. Ac-
cording to quantum mechanics, after some time it will
be in the state | (t) i = p

exp [��t]| nucleus original i +
p

1� exp [��t]| nucleus decayed i. The detector detects
the decay with 100% probability and then triggers the ham-
mer, releasing the poison, killing the cat.

If we treat the entire device fully quantum mechanical, the total state after some time is:

| (t) i =
p

exp [��t]| nucleus original, cat alive i+
p

1� exp [��t]| nucleus decayed,cat dead i.
(1.1)

However superpositions of alive and dead cats contradict our experience, so where does this go
wrong? See also e.g. this video .

1
fortunately, for the cat.
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1.2 Most quantum systems are open

Broad relevance

• In principle, every quantum
system except ”the entire uni-
verse” is open. However as-
suming a closed system can
be a good approximation for
short times (we see later
why).

• In general, the larger a ”sys-
tem”, the more prominent the
environmental influence be-
comes.

• Environment can be helpful/
exploited.

Quantum computers/
Quantum information

• Q-Bits in ion-
trap

quantum technologies

• have: semicon-
ductors, lasers,
MRT

• want: quantum
sensors, smart
materials,...

Opto-mechanics

• cavity with oscil-
lating mirror

• Phonon and pho-
ton leakage

Molecular physics

• Complex
molecule, other
DGFs

Quantum chemistry

• Chemical reac-
tions

• Solvent influence

Material science

• Quasi-particle
damping

• Dissipation

Atomic physics

• Spont. decay

• QED vacuum

(Quantum-?)-biology

• Mag-field sensing

• Sense of smell

• Photosynthesis?

• Conceptually, we can
make an open system
closed by including the
environment. ”Open-
ness” depends on the
choice of S and E. The
choice is however usu-
ally well motivated and
constrainted by practi-
calities or interest.

Really closed systems:

• Few colliding elemen-
tary particles

• Nothing much else ???

• Coherence time record:
10 min Wang et al. Na-
ture Photonics 11
(2017) 646.
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1.3 What is (de-)coherence?

It turns out a major e↵ect of environments on open quantum systems is (quantum) decoherence.
So let us attempt a brief definition of that.

• An ensemble n of waves {exp [i(!nt� knx+ 'n)]} is termed coherent if it will show spatial
or temporal interference patterns after averaging over the ensemble.

• Depending on which type of interference or which ensemble we are referring to, we can
distinguish spatial-, temporal- or spectral coherence.

top: Sketch of Young’s double slit experiment and the resultant interference pattern (for a case
of imperfect fringe visibility V ). r

1,2 are the location of the slits and d
1,2 the distance from either

slit to a chosen location x on the screen.

Consider the paradigmatic experiment on coherence and interference shown above. The field at a
position on the screen is given by

E(x, t) = E
1

(x, t) + E
2

(x, t), with

En(x, t) = E

✓

rn, t� dn
c

◆

1

dn
ei(k�

!

c

)d
n (1.2)

as a superposition of light from slit 1 with light from slit 2. Light is assumed mono-chromatic with
frequency !, wavenumber k and speed of light c, and we ignore polarisation thus using a scalar
electric field E.

The actual intensity observed on the screen is:

I(x, t) ⇠ E(x, t)E(x, t)⇤, (1.3)

where · · · denotes an average over times longer than an optical cycle. The need for this average
will be crucial in the following.

We define tn = dn/c, and can then write

I(x, t) ⇠ 1

d2
1

E(r
1

, t� t
1

)E(r
1

, t� t
1

)⇤ +
1

d2
2

E(r
2

, t� t
2

)E(r
2

, t� t
2

)⇤

+ 2Re

⇢

1

d
1

d
2

E(r
1

, t� t
1

)E(r
2

, t� t
2

)⇤
�

. (1.4)
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The first two terms are just the intensities at slit 1 and 2 assumed constant = I
0

now. If we
had a perfect plane wave impinging on the screen (E =

p
I
0

exp [i(!t� kz)]), the second term

becomes 2I
0

Re
n

exp [i!(t� d
1

/c)] exp [�i!(t� d
2

/c)]
o

= 2I
0

cos
�

2⇡ l
�✓

�

and creates full contrast

interference fringes2. However for a perfect plane wave we would need a laser source. Some extended
incoherent source will have the electric field fluctuating in time and position as shown (orange lines).

These fluctuations a↵ect the electric field correlation function

G(r
1

, t
1

; r
2

, t
2

) ⌘ E(r
1

, t
1

)E(r
2

, t
2

)⇤. (1.5)

which enters the last line in (1.4) and thus the fringe visibility V . It measures to what extent the
electric field at position r

1

and time t
1

will have on average the same phase as that at position r
2

and time t
2

Further reading: This discussion is adapted from Hecht and Ganesan ”Optics” / Walls
and Milburn ”Quantum Optics”. See also:
”Bass, Handbook of optics” chapters 2.8 and 4.
”Römer, Theoretical Optics” chapter 12.

1.3.1 Quantum coherence

• Also in quantum mechanics, coherence controls the degree of visibility of interference e↵ects.

• As we shall see, the concept of quantum coherence crucially involves a large environment.
Interferences we like to measure in a quantum system, then are a↵ected by how the system
has interacted with the environment, which can be thought of as causing the system state to
fluctuate. Averaging over the un-observed environment then causes interferences to disappear.

Example: Matter wave interferometry
left: In a similar setup as
Young’s double slit, con-
sider a matter-wave inter-
fering with itself after re-
flection of some bound-
aries shown. Environ-
mental fluctuations at the
boundary scramble relative
phases and wash out the in-
terference pattern.

Consider the self-interfering matter wave in the example above. Along the x-direction we have

 (x) = N
⇣

eikxxe�i�E T

~ + e�ik
x

x
⌘

, where N is a normalisation factor, kx the wave number (mo-

2
Note the average is over some short interval of time t and drops out.
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mentum along x) and e�i�E T

~ a phase factor that we assume came from Schrödinger’s equation
through some interaction with the environment (slits) lasting time T at energy �E with the bound-
ary at the upper point of reflection.

The interference pattern is given by

| (x)|2 = N 2 cos2 (kxx+ ') . (1.6)

with ' = ��ET/(2~). Depending on �E, fringe positions will shift as indicated in the sketch. To
see a matter wave interference pattern we have to do repeated experiments. If now �E di↵ers for
di↵erent states of the environment and we average over the latter, fringes will be lost.

We will consider this example again in much more detail in section 3.2.3.

Thus de-coherence is the loss of some initially present interference visibility, due to loss of fixed
phase relations ' of di↵erent quantum waves in an average.

1.4 Course outline

1) Motivation and Review: ⇠ 2 weeks
• What is decoherence? Review of QM elements. Problems with QM. System-environment
models (moved into chapter (2) accidentally).

2) Basic Formalism and Interpretation of Decoherence: ⇠ 3 weeks
• Density matrices, purity, ensemble and reduced interpretation. Measurements. Superselection.
Relation of decoherence and dissipation, dephasing, noise. Some Tricks and Tools.

3) Markovian open quantum systems: ⇠ 3 weeks
•Master equation, Born and Markov approximations, Lindblad form. Examples with continuum
systems, Brownian motion, damped harmonic oscillator. Examples with discrete systems, spins,
dephasing, spontaneous decay. Spin-Boson model.

4) Non-Markovian open quantum systems: ⇠ 3 weeks
• Structured baths, memory e↵ects, Redfield and Nakajima Zwanzig equations [scope permit-
ting], examples: molecular vibrations.

5) Quantum-to-Classical Transition and Interpretations of Quantum Mechanics [time permitting]:
⇠ 2 weeks
• Localisation due to environmental scattering, observations, quantum brain, many-worlds.

1.5 Review and Notation

This section aims to remind you of all material from your earlier courses (mainly PHY 303/304:
QM-I/II) that is of particular relevance for this lecture. Anything not fully familiar to you should
be revised.
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1.5.1 The postulates of quantum mechanics

• Quantum mechanics can be built up by starting with a few postulates, and then simply doing
math from there (see e.g. R. Shankar ”Principles of quantum mechanics”, Chapter 4):

(1) The state of a particle is represented by a vector | i in a Hilbert-space.

(2) All observables are represented by an operator Ô, e.g. position operator x̂, momentum operator
p̂. Let the eigenvalues and eigenvectors of the operator be defined by:

Ô|�n i = on|�n i. (1.7)

(3) Then, if the system is in | i and the observable corresponding to Ô is measured, the result
will be one of its eigenvalues ok with probability pk = |h�k | i|2. The state of the system will
change to |�k i as a result of the measurement (collapse of the wave function).

(4) The quantum state obeys the Schrödinger equation

i~ @

@t
| (t) i = Ĥ| (t) i, (1.8)

where Ĥ is the Hamiltonian.

The claim is that the rest of QM that you know mathematically follows, and enables us to make
predictions in agreement with experiment.

In this lecture we will be concerned with the opinion, that the part about wave-function collapse
in postulate (3) is fundamentally unsatisfactory (we see later why, in section 3.2.2).

1.5.2 Single particle quantum mechanics

To study open quantum systems, a recurring approach is to consider a system based on a single
object (particle), with environment composed of many. We want to frequently describe a single
particle in a basis made of eigenstates of the

Time-independent Schrödinger equation(TISE)

Ĥ
0

|'ni = En|'ni. (1.9)

• Where H
0

is the single body Hamiltonian (depends on co-ordinates of one particle)
• |'n i is the (typically) infinite single-particle basis
• En are single particle energies
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Examples:
(i) Free particles in Volume V

Ĥ
0

=
p̂2

2m
= �~2r2

2m
, En =

~2k2

2m
=

p2

2m
, (1.10)

|'n i |�ki =
1pV eikx. (1.11)

where k is the wavenumber and V the quantisation volume.
(ii) Spin states: In terms of the spin operator(s) Ŝ = [Ŝx, Ŝy, Ŝz]T , we define eigenstates

Ŝ2|�s,m
s

i = ~2s(s+ 1)|�s,m
s

i, (1.12)

Ŝz|�s,m
s

i = ~ms|�s,m
s

i, ms = �s · · · s. (1.13)

(1.14)

We will mostly need the spin-1/2 case, for which a Matrix representation can be more
convenient. We have a basis

|'n i 


1
0

�

⇠= | " i = |� 1
2 ,+

1
2
i or



0
1

�

⇠= | # i = |� 1
2 ,�

1
2
i. (1.15)

In terms of this basis, any operator has a 2⇥ 2 matrix representation. We particularly need
the unit matrix plus Pauli matrices

I =


1 0
0 1

�

,�x =



0 1
1 0

�

,�y =



0 �i
i 0

�

,�z =



1 0
0 �1

�

, (1.16)

with commutation relations
⇥

�i,�j
⇤

= 2i✏ijk�k, where ✏ijk is the completely anti-symmetric

tensor. Spin operators are then Ŝk = ~�̂k/2, k 2 {x, y, z}, thus ⇥Ŝi, Ŝj

⇤

= i~✏ijkŜk A typical
Hamiltonian is (e.g. spin in a magnetic field).

Ĥ
0

= �E �̂
3

, E"# = ±�E, (1.17)

We will also refer to eigenstates of Ŝx, which are | i = (| " i + | " i)/p2 and |!i =
(| " i � | " i)/p2.

(iii) Simple Harmonic oscillator. Hamiltonian:

H
0

=
p2

2m
+

1

2
m!2x2. (1.18)
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Examples cont.:

Spatial wave function /States:

'n(x) =
1

p

2nn!
p
⇡�

e�
x

2

2�2 Hn

⇣x

�

⌘

, (1.19)

where � =
p

~/m/!. Energies: En = ~!
�

n+ 1

2

�

.

left: Sketch
of first few
oscillator wave-
functions.

Raising and lowering operators We define,

b̂ =

r

m!

2~ x̂+ i

r

1

2m!~ p̂

b̂† =

r

m!

2~ x̂� i

r

1

2m!~ p̂ (1.20)

We can show that [b̂, b̂†]=1 (from
⇥

x̂, p̂
⇤

= i~) and then re-write the Hamiltonian (1.18) using
raising and lowering operators as

Ĥ
0

= }!
✓

b̂†b̂+
1

2

◆

(1.21)

Nextly we deduce (e.g. in Shankar SQM ⇠= pg.204) the

Function of raising and lowering Operators

b̂|'ni =
p
n|'n�1

i b̂|'
0

i = 0 (1.22)

b̂†|'ni =
p
n+ 1|'n+1

i (1.23)

• These properties follow solely from the commutation relation
h

b̂, b̂†
i

= 1, and hence we

would not need to know the position space representation (1.19).

Number Operator N̂ = b̂†b̂ and N̂ |'ni = n|'ni. We will also denote oscillator
states simply by |n i, hence

N̂ |n i = n|n i (1.24)

The states (1.19) are di�cult to interpret in the context of our experience with the classical har-
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monic oscillator. This link is easier made with the concept of

Coherent states These are defined by |↵ i ⌘ D̂(↵)| 0 i with displacement operator

D̂(↵)| 0 i = e↵â
†�↵⇤â. (1.25)

We can then derive the explicit number state representation:

|↵ i = e�
|↵|2
2

1
X

n=0

↵n

p
n!
|n i. (1.26)

As time goes on, the position space density in a coherent state harmonically oscillates with ampli-
tude |↵| and phase arg(↵) around 0, remaining in a Gaussian shape like |'

0

i.

1.5.3 Many-particle quantum mechanics

When including the environment, most of the examples in section 1.2 are many-body systems.

For each particle we have to add one set of co-ordinates and quantum numbers to the wave-function.
Lets denote the collection of all such variables with

q = {r,ms, · · · }. (1.27)

For N = 2 particles, we then have to write e.g. energy eigenstates �k(q1, q2), where the subscripts
on qj now number the particle j.

An exemplary Hamiltonian for two equal mass particles that interact (with interaction potential
U) would be written as

Ĥ = � ~2
2m

(r2

r1
+r2

r2
) + V (r

1

) + V (r
2

) + U(r
1

, r
2

). (1.28)

Self-exercise: Write a many-body state example for three spin-1/2 particles. Or for five harmonic
oscillators.

As for single particle states we will use �k(x1

,x
2

) to denote specific many-body eigenstates (typi-
cally of the Hamiltonian). We use  (x

1

,x
2

) for a general state, which can always be expanded as
 (x

1

,x
2

) =
P

k ck�k(x1

,x
2

) in eigenfunctions of a Hermitian operator.

1.5.4 Entanglement

We will see later that decoherence of an open quantum system is crucially linked to the generation
of entanglement between the open system and its environment.
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Separable and entangled statesA many body state is called separable, if it can be written
as a product of states for each particle

 sep (x1

,x
2

, · · · ,x
n

) =
N
Y

i=1

�n
i

(xi) (1.29)

All states that are not separable are called entangled.

Examples:
Separable:

| i = | ""i = | "i ⌦ | "i (1.30)

| i = 1

2
(| "i+ | #i)⌦ (| "i+ | #i) = 1

2
(| ""i+ | ##i+ | "#i+ | #"i) (1.31)

 (x
1

, x
2

) =
1pV exp [ik

1

x
1

]N exp [�x2
2

/(2�2)]. (1.32)

Entangled :

| i = 1p
2
(| ""i+ | ##i) (1.33)

 (x
1

, x
2

) = N exp

"

�(x
1

� x
2

)2

2�2

?
� (x

1

+ x
2

)2

2�2

k

#

(1.34)

Tensor product: We used the notation | "i ⌦ | "i, where ⌦ denotes a tensor product.

1.5.5 Time-evolution, pictures

The word ”de-coherence” implies a dynamical process, hence we will have to deal with time-
dependent quantum mechanics.

Schrödinger picture: Quantum evolution according to Eq. (1.8), is said to be in the Schrödinger picture.
Here the state is time-dependent and operators are typically not. For a time-independent Hamil-
tonian Ĥ with Ĥ|�n i = En|�n i we can write | (t) i = P

n cn(t)|�n i, with c(t) = c(0)e�iE
n

t/~.
We can also define the time evolution operator

Û(t) = exp [�iĤt/~], (1.35)

and use it to write | (t) i = Û(t)| (0) i. The simple expression (1.36) is valid for time-independent
Hamiltonians only. Otherwise we need to use

Û(t) = T
⇢

exp [�i
Z t

0

Ĥ(t0)dt0/~]
�

, (1.36)
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where T denotes time-ordering: In the power series for exp all copies of Ĥ have to be ordered such
that their time arguments increase from right to left.

Heisenberg picture: States themselves are not observable. For observables we have to consider
operators (matrix elements of these). For simplicity lets consider expectation values, which we can
re-write as

Ō(t) = h (t) |Ô| (t) i = h (0) |Û †(t)ÔÛ(t)| (0) i = h (0) |Ô(t)| (0) i. (1.37)

The last expression contains the time-dependent operator Ô(t) = Û †(t)ÔÛ(t) and now depends
only on the initial state at t = 0. The time dependence has moved into the operators. This is called
the Heisenberg picture. It is fully equivalent to the Schrödinger picture.

Interaction picture: Let’s assume we have a Hamiltonian with a natural splitting into two pieces
Ĥ = Ĥ

0

+ V̂ . Let’s call Ĥ
0

the ”free Hamiltonian” and V̂ the ”interaction”. This could be for
example a many-body system with the individual energies (non-interacting) in Ĥ

0

and complicated
(maybe time dependent) interactions in V̂ . For us here, we usually have V̂ = Ĥ

int

, the system-
environment interaction (see section 1.1). In some cases, particularly for perturbation theory, it
makes then sense to employ a hybrid version of the two pictures above, where we define states
| I(t) i = ÛI(t)| i with

ÛI(t) = exp [�iĤ
0

t/~]. (1.38)

The subscript I denote interaction picture quantity, states and operators without I are in the
Schrödinger picture. Operators are defined as

ŌI(t) = Û †
I (t)ÔSÛI(t) (1.39)

We can then show the evolution equations

i~ @

@t
| I(t) i = V̂I | I(t) i, (1.40)

i~ @

@t
ÔI(t) =

⇥

ÔI , Ĥ0

⇤

, (1.41)

that is interaction pictures states evolve according to the interaction Hamiltonian only, and oper-
ators according to the free Hamiltonian only.

Further reading: e.g. Sakurai, ”Modern quantum mechanics”, chapter 5.

1.5.6 Stochastic processes

In some sense decoherence involves the randomizing e↵ect of the environment on the system. To
classify this, we need some definitions already at the level of classical stochastic processes.

A stochastic process is based on a time-dependent random variable X(t) (X may be a vector). If
we record a sequence of its values x

1

, x
2

, x
3

, · · · at ordered times t
1

> t
2

> t
3

> · · · , the process
is fully defined by the joint probability density

p(x
1

, t
1

;x
2

, t
2

, x
3

, t
3

, · · · ) (1.42)
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i.e. the probability that we recored value x
1

at time t
1

, and before that x
2

at time t
2

etc. We shall
also need the conditional probability

p(x
1

, t
1

;x
2

, t
2

, x
3

, t
3

, · · · |y
1

, ⌧
1

; y
2

, ⌧
2

, y
3

, ⌧
3

) ⌘ p(x
1

, t
1

;x
2

, t
2

, x
3

, t
3

, · · · , y
1

, ⌧
1

; y
2

, ⌧
2

, y
3

, ⌧
3

)

p(y
1

, ⌧
1

; y
2

, ⌧
2

, y
3

, ⌧
3

)
(1.43)

to have recorded that sequence given already earlier having recorded values y
1

, y
2

, y
3

, · · · at times
⌧
1

> ⌧
2

> ⌧
3

> · · · .

Example I: Money gained from an infinite slot machine:

left: Suppose when pulling the level on the slot machine, either of the
results (0, 50, 100 or 200 Rupies) is spit out with 25% probability each.
Let X(nT ) bet the amount of cash you earned after n attempts (interval
T between attempts). This constitutes a stochastic process (with discrete
time steps).

Using Eq. (1.43) we can define a

Markov processas a stochastic process for which

p(x
1

, t
2

;x
2

, t
2

, x
3

, t
3

, · · · |y
1

, ⌧
1

; y
2

, ⌧
2

, y
3

, ⌧
3

) = p(x
1

, t
2

;x
2

, t
2

, x
3

, t
3

, · · · |y
1

, ⌧
1

) (1.44)

is valid. This means that the future evolution of the process after t only depends on the
state at t, not on the entire history.

• The example I above is of a Markovian stochastic process. If you have 500 INR after n = 10
attempts, the probabilities for having (500, 550, 600 or 700 Rupies) after attempt n = 11 are all
25%, determined only by the status at n = 10. What happens during n = 1, · · · , 9 is irrelevant.

Example II: Money gained from finite reserves slot machine:
left: The situation changes when we assume a limited reservoir size, say
the machine only has 10 notes of each bill to begin with. If it runs out
of a certain note, it gives 0 instead of that note. In the same situation as
before, we now need know all the results of n = 1 · · · 9: If we collected 10
times 50, we no longer get the 50 bill and the probabilities for step n = 11
change to (500 [50%], 550 [0%], 600 [25%] or 700 Rupies [25%]). If we had
won the 500 by e.g. 5 ⇥ 100, probabilities are instead as before. In both
these cases the state at t = nT with n = 10 is identical though. So the
future evolution depends on the entire past.

Further reading: Adapted from Gardiner, ”Handbook of stochastic methods”, chapter 3.
See there for (too) much more information.
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1.6 Localisation versus quantum di↵usion

We end the motivation part with a puzzle why you actually might expect quantum e↵ects in our
everyday life:

Every non-trivial quantummechanical position space wave-function represents a coherent superposition
of many di↵erent position states. One can argue that as long as these are localized enough we would
not see the e↵ect of that in everyday experience. Consider however the freely di↵using quantum
mechanical wavepacket. For an initial state

 (x, t = 0) =
1

(
p
⇡�

0

)1/2
exp



� x2

2�2

0

�

, (1.45)

with free particle Hamiltonian Ĥ = � ~2
2m

@2

@x2 , the time evolution is given by the broadening wavepacket:

| (x, t)|2 = 1p
⇡�(t)

exp



� x2

�(t)2

�

, (1.46)

with width �(t) = �
0

p

1 + ~2t2/(m2�4

0

), (remember QM1, Gri�th section 2.4). If we insert for
example m = 2 ⇥ 14 amu (Nitrogen molecule in air, N

2

) and an initial wave function width
(localisation) of �

0

= 3.5 nm (roughly the distance to the next molecule in the atmosphere), this
spreads significantly on a 1µs time-scale and reaches �(t) ⇡ 10 cm after 10 s. Then all these wave
functions massively overlapp, and why would we not see interference features?

For answer you have to be patient until near the end of the lecture!.
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