Phys635, MBQM II-Semester 2022/23, Tutorial 1, Tue 17.1.

Please sit in your assignment teams, two or three teams to a table (behave like Bosons, not like Fermions). Do the "Stages" in the order below. When all teams finished a stage, elect a student to present and explain on the board.

Stage 1 Why is quantum-many-body theory more challenging than classical many-body theory? Discuss on the table, write on the board.
(i) What information is needed to specify a classical state of N particles? A quantum state?
(ii) Invent a way to "quantify" the volume of that information? How does either scale as the number of particles gets larger?
(iii) In terms of the classification of many-body states seen in the lecture, which aspect is "causing the trouble"?

Stage 2 Second quantisation:
(i) Show the commutation relations (2.8) from the definition of creation and destruction operators (2.4)-(2.7) using test Fock-states (2.2).
(ii) Show that the anti-symmetry of the Fermionic two-mode state $\langle x \mid 11\rangle$ (see second dotpoint below Eq. (2.7)) under exchange of the two mode-labels a and b is correctly captured when using definition (2.6) and incorrectly when skipping the factor $(-1)^{\sum_{k<n} N_{k}}$.
(iii) Consider the Hamiltonian in second quantisation:

$$
\begin{equation*}
\hat{H}=\sum_{m} E_{m} \hat{a}_{m}^{\dagger} \hat{a}_{m} \tag{1}
\end{equation*}
$$

where \hat{a}_{m} destroy spin- 1 bosons in a single (irrelevant) spatial mode and spin states $\left|s=1, m_{s}=m\right\rangle, m=-1,0,1$, i.e. we are using eigenstates of \hat{S}_{z} as single particle basis. What is the physical meaning of this Hamiltonian?
Now convert this Hamiltonian into one based on the single particle basis of eigenstates of \hat{S}_{x}, calling the corresponding operators \hat{b}_{m}, where $\hbar m$ is the eigenvalue of \hat{S}_{x}.

Stage 3 For the following first quantised Hamiltonians describing N particles, find the second quantized one that is equivalent. If there isn't any right option, find the right one.
(i) First quantized: $\hat{H}=-\sum_{n}^{N} \frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r_{n}^{2}}+\sum_{n, k ; n \neq k} \frac{A}{2} e^{-\frac{\left(r_{n}-r_{k}\right)^{2}}{2 S^{2}}}$, second quantized:

$$
\begin{align*}
& \hat{H}_{1}=\int d k \int d k^{\prime}\left(\frac{\hbar^{2} k k^{\prime}}{2 m}\right) \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}+A \int d k \int d k^{\prime} O_{k k^{\prime}} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{k^{\prime}} \\
& \hat{H}_{2}=\int d k\left(\frac{\hbar^{2} k^{2}}{2 m}\right) \hat{a}_{k}^{\dagger} \hat{a}_{k}+A \int d k \int d k^{\prime} \int d q O_{q} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{k^{\prime}+q} \hat{a}_{k-q} \\
& \hat{H}_{3}=\int d k\left(\frac{\hbar^{2} k^{2}}{2 m}\right) \hat{a}_{k}^{\dagger} \hat{a}_{k}+A \int d k \int d k^{\prime} \int d k^{\prime \prime} \int d k^{\prime \prime \prime} O_{k k^{\prime}} O_{k^{\prime \prime} k^{\prime \prime \prime}} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{k^{\prime \prime}} \hat{a}_{k^{\prime \prime \prime}} \tag{2}
\end{align*}
$$

where \hat{a}_{k}^{\dagger} and \hat{a}_{k} create and destroy particles in states $\left|\phi_{k}\right\rangle$ with well defined momentum $p=\hbar k$ [also for (ii) and (iii) below], and $O_{k k^{\prime}}=$ $\frac{1}{2 \pi} \int d x e^{i\left(k^{\prime}-k\right) x} e^{-\frac{x^{2}}{2 S^{2}}}$.
(ii) First quantized: $\hat{V}=\sum_{n, k, \ell ; n \neq k \neq \ell} \frac{A}{3} \frac{1}{\left|r_{n}-r_{k}\right|^{6}}\left(\tanh \left[\frac{\|\left(r_{n}+r_{k}\right) / 2-r_{\ell} \mid+D}{\xi}\right]+1\right)$, second quantized:

$$
\begin{align*}
& \hat{V}_{1}=A \int d k \int d k^{\prime} O_{k k^{\prime}} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}, \\
& \hat{V}_{2}=A \int d k \int d k^{\prime} \int d k^{\prime \prime} \int d k^{\prime \prime \prime} O_{k k^{\prime} k^{\prime \prime} k^{\prime \prime \prime}} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{k^{\prime \prime}} \hat{a}_{k^{\prime \prime \prime}}, \\
& \hat{V}_{3}=A \int d k_{1} \int d k_{2} \int d k_{3} \int d k_{4} \int d k_{5} \int d k_{6} \\
& O_{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{3}}^{\dagger} \hat{a}_{k_{4}} \hat{a}_{k_{5}} \hat{a}_{k_{6}} . \tag{3}
\end{align*}
$$

where $O_{k k^{\prime}}=\frac{1}{(2 \pi)} \int d x e^{i\left(k^{\prime}-k\right) x} A \frac{1}{x^{6}}\left(\tanh \left[\frac{\left|x / 2-r_{\ell}\right|+D}{\xi}\right]+1\right)$,

$$
\begin{aligned}
& O_{k k^{\prime} k^{\prime \prime} k^{\prime \prime \prime}}=\frac{1}{(2 \pi)^{2}} \int d x \int d y e^{i\left(k^{\prime \prime}-k\right) x} e^{i\left(k^{\prime \prime \prime}-k^{\prime}\right) y} A \frac{1}{x^{6}}\left(\tanh \left[\frac{|x / 2-y|+D}{\xi}\right]+1\right), \\
& O_{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}}=\frac{1}{(2 \pi)^{3}} \int d x \int d y \int d z e^{i\left(k_{1}-k_{4}\right) x} e^{i\left(k_{2}-k_{5}\right) y} e^{i\left(k_{3}-k_{6}\right) z} A \frac{1}{x^{6}}\left(\tanh \left[\frac{(x+y) / 2-z+D}{\xi}\right]+1\right)
\end{aligned}
$$

(iii) First quantized: $\hat{V}=\sum_{n, k ; n \neq k} \frac{A}{2} \frac{1}{\left|r_{n}-r_{k}\right|^{6}}$, second quantized:

$$
\begin{align*}
& \hat{V}_{1}=A \int d k \int d k^{\prime} O_{k k^{\prime}} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}, \\
& \hat{V}_{2}=A \int d k \int d k^{\prime} O_{k k^{\prime}} \hat{a}_{k}^{\dagger} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{k^{\prime}} \hat{a}_{k}, \\
& \hat{V}_{3}=A \int d k_{1} \int d k_{2} \int d k_{3} \int d k_{4} \int d k_{5} \int d k_{6} \\
& O_{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{3}}^{\dagger} \hat{a}_{k_{4}} \hat{a}_{k_{5}} \hat{a}_{k_{6}} . \tag{4}
\end{align*}
$$

where $O_{k k^{\prime}}=\frac{1}{(2 \pi)} \int d x e^{i\left(k^{\prime}-k\right) x} A \frac{1}{x^{6}}$,
$O_{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}}=\frac{1}{(2 \pi)^{3}} \int d x \int d y \int d z e^{i\left(k_{1}-k_{4}\right) x} e^{i\left(k_{2}-k_{5}\right) y} e^{i\left(k_{3}-k_{6}\right) z} A \frac{1}{|x-y|^{6}}$.

