Phys635, MBQM II-Semester 2022/23, Tutorial 1 solution

- Stage 1 Why is quantum-many-body theory more challenging than classical many-body theory? Discuss on the table, write on the board.
 - (i) What information is needed to specify a classical state of N particles? A quantum state? Solution: For the classical state, we write down e.g. a phase space point $[\mathbf{r}_1, \cdots \mathbf{r}_N; \mathbf{p}_1, \cdots \mathbf{p}_N]$. In quantum theory a many-body wave-function $\psi(\mathbf{r}_1, \cdots \mathbf{r}_N) \in \mathbb{C}$.
 - (ii) Invent a way to "quantify" the volume of that information? How does either scale as the number of particles gets larger? Solution: Suppose we limit the number of available positions/momenta to M (or in QM the number of modes to M). Then the classical phase-space vector contains 2N real numbers. The QM wavefunction (Eq. (1.24)), contains M^N complex numbers.
 - (iii) In terms of the classification of many-body states seen in the lecture, which aspect is "causing the trouble"? Solution: Entanglement. If it wasn't for entanglement (i.e. we look at a separable state), the information contained again reduces to $M \times N$ complex numbers (why?), which is not so much worse than classical (we say it has the same scaling with N).

Stage 2 Second quantisation:

(i) Show the commutation relations (2.8) from the definition of creation and destruction operators (2.4)-(2.7) using test Fock-states (2.2).
 Solution: We apply the LHS of the commutation relation(s) to an arbitrary test Fock state. For Bosons:

$$\begin{aligned} &(\hat{a}_{i}\hat{a}_{j} - \hat{a}_{j}\hat{a}_{i}) \mid N_{0}, \cdots, N_{i}, \cdots N_{j}, \cdots \rangle \\ &= \begin{cases} \sqrt{N_{i}(N_{i} - 1)} \mid N_{0}, \cdots, N_{i} - 2, \cdots \rangle - \sqrt{N_{i}(N_{i} - 1)} \mid N_{0}, \cdots, N_{i} - 2, \cdots \rangle = 0, & \text{if } i = j, \\ \sqrt{N_{i}N_{j}} \mid \cdots, N_{i} - 1, \cdots N_{j} - 1, \cdots \rangle - \sqrt{N_{i}N_{j}} \mid \cdots, N_{i} - 1, \cdots N_{j} - 1, \cdots \rangle = 0, & \text{if } i \neq j \end{cases}$$
(1)

Since this is true for all test Fock states, we have shown $\hat{a}_i \hat{a}_j - \hat{a}_j \hat{a}_i = 0$ as an <u>operator</u>. For $[\hat{a}_i^{\dagger}, \hat{a}_j^{\dagger}]$ the proof is very similar. Finally

$$\begin{pmatrix} \hat{a}_i \hat{a}_j^{\dagger} - \hat{a}_j^{\dagger} \hat{a}_i \end{pmatrix} | N_0, \cdots, N_i, \cdots N_j, \cdots \rangle$$

$$= \begin{cases} \sqrt{(N_i + 1)(N_i + 1)} | N_0, \cdots, N_i, \cdots \rangle - \sqrt{N_i N_i} | N_0, \cdots, N_i, \cdots \rangle = | N_0, \cdots, N_i, \cdots \rangle, & \text{if } i = j, \\ \sqrt{N_i (N_j + 1)} | \cdots, N_i - 1, \cdots N_j + 1, \cdots \rangle - \sqrt{N_i (N_j + 1)} | \cdots, N_i - 1, \cdots N_j + 1, \cdots \rangle = 0, & \text{if } i \neq j. \end{cases}$$

$$(2)$$

Since this is true for all test Fock states, we have shown $\hat{a}_i \hat{a}_j - \hat{a}_j \hat{a}_i = \delta_{ij}$ as an operator.

(ii) Show that the anti-symmetry of the Fermionic two-mode state $\langle x | 11 \rangle$ (see second dotpoint below Eq. (2.7)) under exchange of the two mode-labels a and b is correctly captured when using definition (2.6) and incorrectly when skipping the factor $(-1)^{\sum_{k < n} N_k}$.

Solution: The position space representation of this state is $\langle \mathbf{x} | 11 \rangle = \frac{1}{2} (\phi_a(\mathbf{x}_1)\phi_b(\mathbf{x}_2) - \phi_b(\mathbf{x}_1)\phi_a(\mathbf{x}_2))$. This is anti-symmetric under exchange of the two-particles $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$, which makes it automatically also anti-symmetric under exchange of the two state labels $a \leftrightarrow b$.

Now consider Fock-states $|n_a, n_b\rangle$. We can build $|1, 1\rangle$ as

$$|1,1\rangle = \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} |0,0\rangle \tag{3}$$

from the vacuum, since $\hat{a}_b^{\dagger} | 0 \rangle \stackrel{Eq. (2.5)}{=} (-1)^0 | 0, 1 \rangle$ and then $\hat{a}_a^{\dagger} | 0, 1 \rangle \stackrel{Eq. (2.5)}{=} (-1)^0 | 1, 1 \rangle$. Now if we do $a \leftrightarrow b$ on the rhs of Eq. (3), we get

$$\hat{a}_{b}^{\dagger}\hat{a}_{a}^{\dagger}|0,0\rangle \stackrel{Eq. (2.5)}{=} \hat{a}_{b}^{\dagger}(-1)^{0}|1,0\rangle = \stackrel{Eq. (2.5)}{=} (-1)^{1}|1,1\rangle = -|1,1\rangle.$$
(4)

We could have also directly used the anti-commutator $\{\hat{a}_a, \hat{a}_b\} = 0$ to see this, since it by design incorporates this behavior.

(iii) Consider the Hamiltonian in second quantisation:

$$\hat{H} = \sum_{m} E_m \hat{a}_m^{\dagger} \hat{a}_m \tag{5}$$

where \hat{a}_m destroy spin-1 bosons in a single (irrelevant) spatial mode and spin states $|s = 1, m_s = m\rangle$, m = -1, 0, 1 i.e. we are using eigenstates of \hat{S}_z as single particle basis. What is the physical meaning of this Hamiltonian? Now convert this Hamiltonian into one based on the single particle basis of eigenstates of \hat{S}_x , calling the corresponding operators \hat{b}_m , where $\hbar m$ is the eigenvalue of \hat{S}_x .

Solution: The physical meaning of the original Hamiltonian is just that each boson in state m has an energy E_m that depends on its spin-state, e.g. due to an external magnetic field and the Zeeman effect.

The spin operator \hat{S}_x for spin-1 has the matrix form

$$\hat{S}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \tag{6}$$

with eigenvectors $[1, \sqrt{2}, 1]^T/2$ (m = +1), $[1, 0, -1]^T/\sqrt{2}$ (m = 0), $[1, -\sqrt{2}, 1]^T/2$ (m = -1). The matrix containing these three eigenvectors as columns $u_{\ell m}$ is the transformation matrix between the two bases. Using Eq. (2.20) [with $\ell \leftrightarrow m$]

$$\hat{H} = \sum_{m\ell\ell'} E_m(u_{m\ell}^* \hat{c}_\ell^\dagger) (u_{m\ell'} \hat{c}_\ell') = \sum_{\ell\ell'} h_{\ell\ell'} \hat{c}_\ell^\dagger \hat{c}_\ell$$
(7)

where we have defined new single particle matrix elements of the Hamiltonian $h_{\ell\ell'} = \sum_m E_m u_{m\ell}^* u_{m\ell'}$.

E.g. for $E_m \to \kappa [1, 0, -1]^T$, as would be the structure of the Zeeman effect, we have $\hat{H} = \frac{\kappa}{\sqrt{2}} (\hat{c}_1^{\dagger} \hat{c}_0 + \hat{c}_0^{\dagger} \hat{c}_{-1} + h.c.)$. We can see that the spin of all particles starting in an eigenstate of \hat{S}_x will precess around the magnetic field direction, as expected.

Stage 3 Solution comes later