Phys635, MBQM II-Semester 2022/23, Tutorial 1 solution

Stage 1 Why is quantum-many-body theory more challenging than classical many-body theory? Discuss on the table, write on the board.
(i) What information is needed to specify a classical state of N particles? A quantum state? Solution: For the classical state, we write down e.g. a phase space point $\left[\mathbf{r}_{1}, \cdots \mathbf{r}_{N} ; \mathbf{p}_{1}, \cdots \mathbf{p}_{N}\right]$. In quantum theory a many-body wave-function $\psi\left(\mathbf{r}_{1}, \cdots \mathbf{r}_{N}\right) \in \mathbb{C}$.
(ii) Invent a way to "quantify" the volume of that information? How does either scale as the number of particles gets larger? Solution: Suppose we limit the number of available positions/momenta to M (or in QM the number of modes to M). Then the classical phase-space vector contains $2 N$ real numbers. The QM wavefunction (Eq. (1.24)), contains M^{N} complex numbers.
(iii) In terms of the classification of many-body states seen in the lecture, which aspect is "causing the trouble"? Solution: Entanglement. If it wasn't for entanglement (i.e. we look at a separable state), the information contained again reduces to $M \times N$ complex numbers (why?), which is not so much worse than classical (we say it has the same scaling with N).

Stage 2 Second quantisation:
(i) Show the commutation relations (2.8) from the definition of creation and destruction operators (2.4)-(2.7) using test Fock-states (2.2).
Solution: We apply the LHS of the commutation relation(s) to an arbitrary test Fock state. For Bosons:

$$
\begin{align*}
& \left(\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}\right)\left|N_{0}, \cdots, N_{i}, \cdots N_{j}, \cdots\right\rangle \\
& =\left\{\begin{array}{l}
\sqrt{N_{i}\left(N_{i}-1\right)}\left|N_{0}, \cdots, N_{i}-2, \cdots\right\rangle-\sqrt{N_{i}\left(N_{i}-1\right)}\left|N_{0}, \cdots, N_{i}-2, \cdots\right\rangle=0, \text { if } i=j, \\
\sqrt{N_{i} N_{j}}\left|\cdots, N_{i}-1, \cdots N_{j}-1, \cdots\right\rangle-\sqrt{N_{i} N_{j}}\left|\cdots, N_{i}-1, \cdots N_{j}-1, \cdots\right\rangle=0, \text { if } i \neq j .
\end{array}\right. \tag{1}
\end{align*}
$$

Since this is true for all test Fock states, we have shown $\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}=0$ as an operator. For $\overline{\left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right] \text { the proof is very similar. Finally }}$
$\left(\hat{a}_{i} \hat{a}_{j}^{\dagger}-\hat{a}_{j}^{\dagger} \hat{a}_{i}\right)\left|N_{0}, \cdots, N_{i}, \cdots N_{j}, \cdots\right\rangle$
$=\left\{\begin{array}{l}\sqrt{\left(N_{i}+1\right)\left(N_{i}+1\right)}\left|N_{0}, \cdots, N_{i}, \cdots\right\rangle-\sqrt{N_{i} N_{i}}\left|N_{0}, \cdots, N_{i}, \cdots\right\rangle=\left|N_{0}, \cdots, N_{i}, \cdots\right\rangle, \text { if } i=j, \\ \sqrt{N_{i}\left(N_{j}+1\right)}\left|\cdots, N_{i}-1, \cdots N_{j}+1, \cdots\right\rangle-\sqrt{N_{i}\left(N_{j}+1\right)}\left|\cdots, N_{i}-1, \cdots N_{j}+1, \cdots\right\rangle=0, \text { if } i \neq j .\end{array}\right.$

Since this is true for all test Fock states, we have shown $\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}=\delta_{i j}$ as an operator.
(ii) Show that the anti-symmetry of the Fermionic two-mode state $\langle x \mid 11\rangle$ (see second dotpoint below Eq. (2.7)) under exchange of the two mode-labels a and b is correctly captured when using definition (2.6) and incorrectly when skipping the factor $(-1)^{\sum_{k<n} N_{k}}$.
Solution: The position space representation of this state is $\langle\mathbf{x} \mid 11\rangle=$ $\frac{1}{2}\left(\phi_{a}\left(\mathbf{x}_{1}\right) \phi_{b}\left(\mathbf{x}_{2}\right)-\phi_{b}\left(\mathbf{x}_{1}\right) \phi_{a}\left(\mathbf{x}_{2}\right)\right)$. This is anti-symmetric under exchange of the two-particles $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}$, which makes it automatically also antisymmetric under exchange of the two state labels $a \leftrightarrow b$.
Now consider Fock-states $\left|n_{a}, n_{b}\right\rangle$. We can build $|1,1\rangle$ as

$$
\begin{equation*}
|1,1\rangle=\hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger}|0,0\rangle \tag{3}
\end{equation*}
$$

from the vacuum, since $\hat{a}_{b}^{\dagger}|0\rangle \stackrel{\text { Eq. (2.5) }}{=}(-1)^{0}|0,1\rangle$ and then $\hat{a}_{a}^{\dagger}|0,1\rangle \stackrel{\text { Eq. }}{=}{ }^{(2.5)}$ $(-1)^{0}|1,1\rangle$. Now if we do $a \leftrightarrow b$ on the rhs of $E q$. (3), we get

$$
\begin{equation*}
\hat{a}_{b}^{\dagger} \hat{a}_{a}^{\dagger}|0,0\rangle \stackrel{E q .(2.5)}{=} \hat{a}_{b}^{\dagger}(-1)^{0}|1,0\rangle=\stackrel{\text { Eq. }}{=}={ }^{(2.5)}(-1)^{1}|1,1\rangle=-|1,1\rangle . \tag{4}
\end{equation*}
$$

We could have also directly used the anti-commutator $\left\{\hat{a}_{a}, \hat{a}_{b}\right\}=0$ to see this, since it by design incorporates this behavior.
(iii) Consider the Hamiltonian in second quantisation:

$$
\begin{equation*}
\hat{H}=\sum_{m} E_{m} \hat{a}_{m}^{\dagger} \hat{a}_{m} \tag{5}
\end{equation*}
$$

where \hat{a}_{m} destroy spin- 1 bosons in a single (irrelevant) spatial mode and spin states $\left|s=1, m_{s}=m\right\rangle, m=-1,0,1$ i.e. we are using eigenstates of \hat{S}_{z} as single particle basis. What is the physical meaning of this Hamiltonian? Now convert this Hamiltonian into one based on the single particle basis of eigenstates of \hat{S}_{x}, calling the corresponding operators \hat{b}_{m}, where $\hbar m$ is the eigenvalue of \hat{S}_{x}.
Solution: The physical meaning of the original Hamiltonian is just that each boson in state m has an energy E_{m} that depends on its spin-state, e.g. due to an external magnetic field and the Zeeman effect.

The spin operator \hat{S}_{x} for spin-1 has the matrix form

$$
\hat{S}_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \tag{6}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

with eigenvectors $[1, \sqrt{2}, 1]^{T} / 2(m=+1),[1,0,-1]^{T} / \sqrt{2}(m=0)$, $[1,-\sqrt{2}, 1]^{T} / 2(m=-1)$. The matrix containing these three eigenvectors as columns $u_{\ell m}$ is the transformation matrix between the two bases.
Using Eq. (2.20) [with $\ell \leftrightarrow m$]

$$
\begin{equation*}
\hat{H}=\sum_{m \ell \ell^{\prime}} E_{m}\left(u_{m \ell}^{*} \hat{c}_{\ell}^{\dagger}\right)\left(u_{m \ell^{\prime}} \hat{c}_{\ell}^{\prime}\right)=\sum_{\ell \ell^{\prime}} h_{\ell \ell^{\prime}} \hat{c}_{\ell}^{\dagger} \hat{c}_{\ell} \tag{7}
\end{equation*}
$$

where we have defined new single particle matrix elements of the Hamiltonian $h_{\ell \ell^{\prime}}=\sum_{m} E_{m} u_{m \ell}^{*} u_{m \ell^{\prime}}$. E.g. for $E_{m} \rightarrow \kappa[1,0,-1]^{T}$, as would be the structure of the Zeeman effect, we have $\hat{H}=\frac{\kappa}{\sqrt{2}}\left(\hat{c}_{1}^{\dagger} \hat{c}_{0}+\hat{c}_{0}^{\dagger} \hat{c}_{-1}+h . c.\right)$. We can see that the spin of all particles starting in an eigenstate of \hat{S}_{x} will precess around the magnetic field direction, as expected.

Stage 3 Solution comes later

