PHY635, MBQM II-Semester 2022/23, last Assignment 6

Instructor: Sebastian Wüster
Due-date: email by 14.4.2023

(1) Treating an atom like a degenerate Fermi gas

In heavy atoms, the attraction of electrons towards the heavily charged nucleus might lead to the generation of a "degenerate Fermi gas". Let us assume an atom has a radius R, which roughly stays constant at $R=a_{0}$ for various species (which it approximately does in fact), and all Z electrons are squeezed into a spherical shell of that radius. We then want to define a local electron density profile $\rho_{e}(r)$ and want to calculate this profile as a function of distance from the nucleus.
(a) For this to make any sense, we require $k_{F} R \gg 1$, since otherwise the wavelengths of even the highest occupied electron states is too large to add up to a density profile $\rho_{e}(r)$. Assuming the electrons are homogeneously distributed in a spherical volume of radius R, evaluate $k_{F} R$ for 5-6 elements representatively spread accross the periodic table, and discuss for which atoms our degenerate Fermi gas approach might work. [2 points]
(b) Now we assume we can define a local Fermi wavenumber k_{F}, again using the homogenous result for Fermions with spin $1 / 2$, but now allowing the density $\rho_{e}(\mathbf{x})$ to vary with position \mathbf{x}. The same local density approximation and results from the lecture can give you the kinetic energy as a function of r. Combine these with all other energies in the problem, to set up an energy functional $E[\rho(\mathbf{x})]$, which gives you how the total energy of the atom depends on the electron density $\rho_{e}(\mathbf{x})$. [4 points]
(c) Now we add the constraint that the total number of electrons must be $N_{e}=Z$, by means of a Lagrange multiplier ${ }^{1} \lambda$ to reach the functional

$$
\begin{equation*}
H[\rho(\mathbf{x}), \lambda]=E[\rho(\mathbf{x})]-\lambda\left(N[\rho(\mathbf{x})]-N_{e}\right), \tag{1}
\end{equation*}
$$

where $N[\rho(\mathbf{x})]$ is the expression that gives you N_{e} from $\rho_{e}(\mathbf{x})$.
Find extrema by the functional differentiation $\delta H[\rho(\mathbf{x}), \lambda] / \delta \rho(\mathbf{x})$ simultaneous with $\partial H[\rho(\mathbf{x}), \lambda] / \partial \lambda=0$. Discuss the meaning of the two coupled equations obtained. [2 points]
(d) In the equations from (c), let us now exploit the spherical symmetry of the atom and use a coordinate $r=|\mathbf{x}|$. Write down the electro-static potential energy $V(r)$ for an electron within the atom, and then define the functions $U(r)=V(r)-\lambda$ and from that $\Phi(r)=-\frac{r}{C} U(r)$ with constant(s) C. Finally show the Thomas-Fermi equation

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} \Phi(x)=\frac{1}{\sqrt{x}} \Phi(x)^{3 / 2} \tag{2}
\end{equation*}
$$

[^0]when using the right dimensionless radius $x=r / b$ and choice of C. Hints: Find some physical constraints for solutions, and reasonable initial conditions at $r=0$. One initial condition can be derived and one can be found by trial and error, requiring the total electron charge to be $Z(-e)$. Make plots of solutions you find. In the very end test your result by calculations for a selected atom and compare the radial electron distribution with figures found in the internet for the full (Schrödinger's equation) result. [4 points]
(e) To numerically solve Eq. (2) from some infinitesimal ϵ to $x_{\max }=R / b$, we need two initial conditions. You can derive $\Phi(\epsilon)$ from physical principles and just take $\Phi(\epsilon)^{\prime}=$ -1.5880710 for reasons that shall be explained in the solution ${ }^{2}$ Then compare a numerical solution for the electron density with an exact literature result for Mercury and discuss. [3 points]
(2) Excitations in a Fermi liquid: Calculate the energy of hole and particle excitations in a Fermi liquid (homogeneous system as in lecture) to first order perturbation theory in the interaction between different spin Fermions. Then take their energy relative to the unperturbed Fermi sea. Make a graph of particle/hole energy as a function of k and discuss your results and their interpretation. [5 points]
(3) Superfluid current Assume an attractively interacting Fermi gas described by the BdG equations (4.65). Let the order parameter be $\Delta(\mathbf{r})=\Delta_{0} \exp [2 i \varphi(\mathbf{r})]$, in an otherwise homogenous system (no external potential, homogenous density). Find an expression for the superfluid current and superfluid velocity and discuss. [10 points]

[^1]
[^0]: ${ }^{1}$ revise finding minima of functions in higher dimensions with constraints.

[^1]: ${ }^{2}$ This picks neutral atoms, as opposed to e.g. positive ions, for which the TF equation is also valid.

