
PHY635, II-Semester 2022/23, Assignment 5 solution

(1) Electron gas in 2D: We can now routinely create materials or devices in which
electron dynamics is effectively constrained to two dimensions, such as in graphene or
layered semi-conductor stuctures.

(a) For a gas of electrons free to move in only 2 dimensions, find the Fermi energy and
temperature in terms of the 2D electron density. [5 points] Solution: You had to adapt
lecture section 4.1. from 3D to 2D. We still have occupations

m̄nx,ny ,s =

{
1 En < µ

0 En ≥ µ

However when summing these up, we need to consider the reduced dimensionality

⇒ N =
∑

nx,ny ,s

m̄nx,ny ,nz ,s ≈
2

4

∫
d2n m̄n (1)

=
2π

2

∫ nmax

0

dn n (use 2D polar coordinates) (2)

= π
n2
max

2
. (3)

In the first equality, a factor of two is spin multiplicity, and 1/4 is due to only positive
quadrant in 2D. We get nmax from the single particle-in-the-box energies (see appendix)

as before nmax =
√

2mL2µ
π2ℏ2 . Thus

N =
π

2

2mL2EF

π2ℏ2
=
mL2EF

πℏ2
⇒

EF =
πℏ2

m

(
N

L2

)
︸ ︷︷ ︸
=ρ2D

, (4)

TF =
πℏ2ρ2D
kbm

. (5)

(b) Assume the 2D gas electrons are confined in a semi-conductor heterostructure, with
the middle layer (containing the electron gas) composed of GaAs. Find or google a
simple estimate for the 2D electron density in this system and use this to evaluate the
quantities calculated in (a) for this system. [5 points] Solution: The key input into
any Fermi energy calculation is the free electron density. For a 3D metal, this would
be easy to estimate, see e.g. [wikipedia on charge carrier density] using

ρe,3D,metal =
NAZnmass

ma

, (6)

where NA is Avogadro’s number, nmass the mass density of the element, ma its atomic
mass and Z the number of valence electrons per atom.

1

https://en.wikipedia.org/wiki/Charge_carrier_density


In a 2D semi-conductor material, like GaAs, this is more complicated
since it would depend on the doping and hetero-structure, hence we have
to google some typical values for this material explicitly. For example in
Journal of Applied Physics 123, 025302 (2018) , we can find

ρe,2D,GaAs = 2× 1018 m−2. (7)

Using this value in the formulae from A gives EF = 0.5 eV and TF = 5819 K. We
conclude that at room temperature (or any other temperature where the material is
not destroyed), the 2D electrons in the hetero-structure form a degenerate Fermi gas.
The Fermi energy is of the order of magnitude of typical band-gaps or band-widths
in materials, and the precise relation of this and the structure of allowed electronic
states can be important for the functioning of the material.

(2) White dwarf stars: Derive the maximum mass that a white dwarf star can have,
assuming electrons are ultra-relativistic (energy ≫ rest mass energy) and the density in
the star is uniform. [10 points] Solution: For ultra-relativistic electrons, we can neglect
the rest mass term compared to the momentum dependent term in the formula for the
relativistic total energy:

E =
√

p2c2 +m2c4
v≈c
≈ c|p| = cℏ|k|. (8)

If we reconsider the particle in an infinite square well potential for this case, we still can
use the same wavefunctions as before, since they were determined only by the boundary-
conditions and by plane-waves (or cosines/sines) being eigenfunctions of the Hamiltonian,
which is still the case for our new Hamiltonian that is only a function of the momentum
operator.

Placing the box from x = 0 · · ·L in all three dimension, we still have allowed wavenum-
bers k = [kx, ky, kz]

T with ki = niπ/L for i = x, y, z. The modulus of the wavenumber is
thus |k| =

√
n2
x + n2

y + n2
zπ/L. Looking at energies on the Fermi energy E = EF , Eq. (8)

gives us

EF =
πcℏ
L

√
n2
x + n2

y + n2
z. (9)

which defines a sphere in the space of quantum numbers n of radius nmax =
EFL
πcℏ .

As in section 4.1, we now just add occupation numbers up to the Fermi energy to
express the total atom number (for Fermions with spin degeneracy s = 2):

N = 2
∑
b

m̄b =
∑

nx,ny ,nz ;|n|<nmax

=
2

8

∫
d3|n|<nmaxn

=
4π

4

∫ nmax

0

dn n2 =
π

3
n3
max =

π

3

(
EFL

πcℏ

)3

(10)

In the third equality of the first line the factor 1/8 takes care of the fact that the original
summation was over positive ni only, while the integration contains all real values. We
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can now find the Fermi energy and express the RHS in terms of the particle density in
the box ρ = N/L3

EF = cℏ(3π2)1/3
(
N

L3

)1/3

= cℏ(3ρπ2)1/3. (11)

Comparing with the non-relativistic result in Eq. (4.6), the most important change is that
this now scales with density as ρ1/3 instead of ρ2/3.

We also have to modify our calculation of the degeneracy pressure, since the relation
P · V = 2

3
N⟨εkin used earlier does not work in the relativistic case, instead we now find

the pressure using P = −∂E/∂V , where E is the total energy and V the volume.
To find the former:

E =
2

8

∫
d3n E(n),

(
E(n) =

πcℏ
L

|n|
)

=
4π

4

(
πcℏ
L

)∫ nmax

0

dn n3

=
3

4
cℏ(3ρ/π)1/3N =

3

4
EFN

The relativistic degeneracy pressure thus is

PF = − ∂

∂V

(
3

4
EFN

)
= − ∂

∂V

(
3

4
cℏ
(
3Nπ2

V

)1/3
)
N =

1

4
cℏ
(
3Nπ2

V

)1/3
N

V
=

1

4
cℏ(3π2)1/3ρ4/3.

(12)
This scales as ρ4/3 as stated in Eq. (4.14).

If we now redo the equilibrium calculation in Eq. (4.11) using this PF

0 = dE =
∂

∂R

(
−3

5

M2

R
G︸ ︷︷ ︸

Egrav

)
dR −PF (R)(4πR

2dR)︸ ︷︷ ︸
using dE=−PdV from thermodynamics

. (13)

From the mass density ρmass = M/(4/3πR3), we can infer the electron density 2mpρ =
ρmass as we did before

0 =

(
3GM2

5
− 35/3π1/3cℏM4/3

16m
4/3
p

)
1

R2
(14)

We no longer can use this to find a stable radius, since it drops out, only to know that
there is no solution unless the factor in brackets vanishes, which gives us a mass

M =

[
15
√
5π

64

](
cℏ
G

)3/2

= 1.72M⊙, (15)

with solar mass M⊙ = 1.988× 1030 kg. The real limit is 1.44 M⊙, but for that one has to
take into account the non-constant density profile of the star, so this is not too bad.
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Please see pages attached at the back for much more information. Some results here
disagree in numerical factors with those, please spot the mistakes and let me know. (3)

Bosonic versus Fermionic ground-states
The template file Assignment5 phy635 program draft v1.xmds finds the ground-state
of the Schrödinger equation for two Bosonic 7Li atoms in a one-dimensional harmonic
trap using imaginary time evolution. Lithium also has a long-lived Fermionic isotope 6Li.

(3a) From the many-body wavefunction, derive an expression for the total density of
atoms at position x. Implement the sampling of that in the last output block of the
script provided. Note that the block is set up to integrate whatever is inserted over the
coordinate x2. [2 points]. Solution: If ψ(x1, x2) is the manybody wavefunction of the 2 Li
atoms, then total density of the atoms at some point x1 is given as:

ρ(x) = 2

∫
dx2|ψ(x, x2)|2 (16)

In general we would have that the total density is ρ(x) =
∑

n ρ(xn), where ρ(xn)
is the density for atom number n. We get the density for a single atom, by
integrating over all other coordinates in the many-body wave function: ρ(xk) =∫
dx1dx2 . . . skip dxk . . . dxN |ψ(x1, x2, . . . , xk, . . . , xN)|2. Since the many-body wave func-

tion fulfills Bose symmetry all N pieces in ρ(x) =
∑

n ρ(xn) will be identical.
Hence we can just consider the density for atom one only and have ρ(x) =∫
dx2 . . . dxN |ψ(x, x2, . . . , xk, . . . , xN)|2.

(3b) Analytically show that the imaginary time (and real time) Schrödinger equation
for two particles preserves Bosonic and Fermionic symmetries of the wave-function. [1
points] Solution: We do this for two particles only (more follows similarly): Let us as-
sume our wave-function fulfills ψ(x1, x2) = ±ψ(x2, x1). Identical particles must feel the
same potential V (x) and have the same mass m, hence the SE is

iℏ
∂

∂t
ψ(x1, x2) =

[
− ℏ2

2m

(
∂2

∂x21
+

∂2

∂x22

)
+ V (x1) + V (x2)

]
ψ(x1, x2). (17)

We can directly see by inspection of the right-hand side that iℏ ∂
∂t
ψ(x1, x2) =

±iℏ ∂
∂t
ψ(x2, x1). Hence if the wave-function fulfills Bose or Fermi symmetry initially,

it will do so at all later times as well.

(3c) Using (4b), modify the code such that it can find the corresponding ground-state for
two Fermionic atoms. Compare total densities for the Fermionic and Bosonic cases with
the scripts provided. How is the Fermionic density pattern called? [3 points] Solution:
Fig. 1 is the ground state of the two-body wavefunction for the Fermions and Bosons in
the harmonic trap. It is clear from the figure that time imaginary evolution preserve the
Bosonic and Fermionic symmetry of the manybody wavefunction.

(3d) Now assume the Bosons are interacting with a very short range but strong re-

pulsive interaction U(x1 − x2) = A exp(− |x1−x2|2
2σ2 ). Implement that into the imagi-

nary time evolution, and compare the ground-state and total density for the interacting
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Figure 1: Panel (a) and panel (b) are the real parts of the wavefunction for Two Bosons
and Fermions in the harmonic trap.
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Figure 2: Comparision of the total density for two Bosons and Fermions in the harmonic
trap.

Bosons, with the non-interacting Fermions Bosons. Discuss. [4 points] Solution: We
now add a second item into the vector potentials that we call interactions, choosing
U(x1−x2) = U0 exp[−(x1−x2)2/2/σ2

int]. We interpret “strong” as U0 = 100ℏω and “short
range” as σint = σ/8, where σ =

√
ℏ/m/ω is the harmonic oscillator ground state width.

This potential essentially enforces the boundary condition Ψ(x1 = x2) = 0 on the diagonal,
due to which the Bosonic two body wavefunction looks somewhat similar to the Fermionic
one, but with different signs, see Fig. 3 and compare with Fig. 1 (right). If we look at the
total density instead, and compare it with the total density for the non-interacting case,
see Fig. 4, we see that the repulsion somehow pushes already these two atoms outwards,
as we would expect it from a GPE type of treatment. However the short range correlations
due to the interactions, evident on the diagonal in Fig. 3 would not be included in the
mean field treatment.
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Figure 3: Bosonic ground-state wavefunction in the presence of interactions
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Figure 4: Comparison of total density without interactions (red) and with interactions
(black)
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