
PHY635, II-Semester 2022/23, Assignment 3 solution

Instructor: Sebastian Wüster
(1) Bose-Einstein condensation in different numbers of dimensions Revisit the
calculation of section 3.2.

(a) Then adapt it to a 2D and a 1D harmonic trap. Find the condensation temperature
in either case. [5 pts]

Solution: As before we find the lowest temperature Tc where N0 ≈ 0 is still possible
at µ̃ = 0. Using βc =

1
kBTc

we start as in the lecture notes, but now have a summation
only over 2 indices nx and ny

N =
∑

n̸=(00)

1

exp[βc(ℏω(nx + ny))− µ̃
↓
=0

]− 1
(1)

≈
∫
dnxdny

1

exp[βc(ℏω(nx + ny))]− 1
, Let n′

x/y = ℏω nx/y (2)

≈
(
kBTc
ℏω

)2 ∫ ∞

0

dn′
xdn

′
y

1

en
′
x+n′

y − 1

=

(
kBTc
ℏω

)2 ∞∑
p=1

∫
d2ne−p(n′

x+n′
y), where we used

[
∞∑
p=1

e−pα =
1

eα − 1

]
︸ ︷︷ ︸

geometric series

(3)

=

(
kBTc
ℏω

)2 ∞∑
p=1

(∫ ∞

0

dn′
xe

−pn′
x

)
︸ ︷︷ ︸

=1/p

(∫ ∞

0

dn′
ye

−pn′
y

)
(4)

=

(
kBTc
ℏω

)2 ∞∑
p=1

1

p2
=

(
kBTc
ℏω

)2
π2

6
(5)

where the series can be e.g. done with mathematica. Thus in a 2D trap, the conden-
sation temperature is kBTc =

√
6ℏωN1/2/π.

It should now be clear that in 1D we just remove yet one more integration/summation
index and power of

(
kBTc

ℏω

)
, and thus end up with

N =

(
kBTc
ℏω

) ∞∑
p=1

(∫ ∞

0

dn′
xe

−pn′
x

)
︸ ︷︷ ︸

=1/p

instead of the second to last line. However now we notice that the series does not
converge. Thus formally we need Tc = 0, there is no Bose-Einstein condensation in a
strictly 1D system.
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(b) Next adapt it to a 3D equal side length infinite square well potential. [5 pts]

Solution: Again we attempt to stick as closely as possible to the earlier calculation,
this time we keep the three dimensions, but swap the energy for that of a particle in
the infinite square well potential. Assuming a cubic box of side length a, the energy
in 3D is given by

Enx,ny ,nz =
ℏ2π2(n2

x + n2
y + n2

z)

2ma2
. (6)

We thus start from

N ≈
∫
dnxdnydnz

1

exp[
βcℏ2π2(n2

x+n2
y+n2

z)

2ma2
]− 1

, (7)

and use a slightly different substitution n′
x/y/z =

√
βcℏπ√
2ma

nx/y/z, thanks to which

N ≈

(√
2ma√
βcℏπ

)3 ∫
dn′

xdn
′
ydn

′
z

1

exp[n′2
x + n′2

y + n′2
z ]− 1

, (8)

The integral appears amenable to spherical 3D polar coordinates in the space [n′
xn

′
yn

′
z],

hence we define a radial coordinate n =
√
n′2
x + n′2

y + n′2
z . The corresponding angular

integrations trivally give (4π). Then

N ≈ (4π)

(√
2ma√
βcℏπ

)3 ∫ ∞

0

dn
n2

exp[n2]− 1︸ ︷︷ ︸
= 1

4

√
πζ(3/2)

, (9)

which we can reshuffle to yield: kBTc =
πℏ2
2ma2

(
N

ζ(3/2)

)2/3
.

(c) Compare all dimensions and systems you have inspected and discuss the dependence
of critical temperature on the number of dimensions and system details. [2 pts]

Solution: We found that the power law with which the critical temperature depends
on parameters and atom numbers change with both, number of dimensions and details
of potential.

(2) Grand canonical ensemble Consider a collection of non-interacting particles
Bosons1 in the infinite square well potential V (x) (zero between x = 0 and x = a, infinite
outside). 2D harmonic trap V (x) = mω2(x2 + y2)/2. For whatever reasons2, assume
these to be in contact with an environment at temperature T > Tcrit and also exchanging
particles with it. Find the chemical potential required to have a given mean number N

1We meant Bosons, you can do it for Fermions as well
2theoretical ones
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of particles in the box. [8 pts]

Solution: The starting point is again Eq. (1) as before, however now we have nonzero
µ̃ = µ− ℏω.

N =
∑

n̸=(00)

1

exp[β[ℏω(nx + ny)− µ̃]]− 1
(10)

and β = 1/(kBT ) (not Tcrit). Nonetheless we can do all the subsequent steps as before:

N ≈
∫
dnxdny

1

exp[β[ℏω(nx + ny)− µ̃]]− 1
, Let n′

x/y = ℏω nx/y (11)

≈
(
kBT

ℏω

)2 ∫ ∞

0

dn′
xdn

′
y

1

en
′
x+n′

y−µ̃′ − 1
. (12)

where we defined µ̃′ = βµ̃. Then as before

N =

(
kBT

ℏω

)2 ∞∑
p=1

∫
d2ne−p(n′

x+n′
y−µ̃′), where we used

[
∞∑
p=1

e−pα =
1

eα − 1

]
︸ ︷︷ ︸

geometric series

(13)

=

(
kBT

ℏω

)2 ∞∑
p=1

e−pµ̃′
(∫ ∞

0

dn′
xe

−pn′
x

)
︸ ︷︷ ︸

=1/p

(∫ ∞

0

dn′
ye

−pn′
y

)
(14)

=

(
kBT

ℏω

)2 ∞∑
p=1

e−pµ̃′

p2
=

(
kBTc
ℏω

)2
π2

6
Li2(e

−µ̃′
) (15)

where Li denotes the polylogarithm. Eq. (15) contains µ′ and N so in principle (at least
numerically) we can find µ′ and hence µ in terms of the target mean atom number N and
other system parameters. However since the relation involves special functions, it is not
straightforward to do this explicitly.

(3) Bose gas thermometry: Consider a partially condensed Bose gas of a mean number
of N̄ = 105 87Rb atoms in an isotropic harmonic trap with trapping frequency ω = (2π)100
Hz. Assume the atoms do not interact, because interactions are switched off using a
Feshbach resonance, which we will discuss later.

(a) Find the specific heat C = ∂E/∂T of the Bose-gas above and below T = Tcrit, where
E is the total energy of a Bose gas using the canonical ensemble. [2pts]

Solution: See Pethik and Smith, section 2.4.

(b) Using a mathematica script or analytical calculations, find the atom numberdensity
ρ(r) as a function of radial distance from the centre of the trap r. Show plots of this
for T = 0, T = Tcrit/2 and T > Tcrit. [5 pts]
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Solution: Let us calculate the density in a partially Bose condensed and other-
wise thermal state from scratch, assuming a density matrix ρ̂ =

∑
N pN|N ⟩⟨N | and

field operator Ψ̂(r) =
∑

k φk(r)âk, expressed in terms of Fock states and destruction
operators for eigenstates φk(r) of the isotropic 3D oscillator.

In the above density matrix, we obtain a total density

ρ(r) = Tr[ρ̂Ψ̂†(r)Ψ̂(r)] =
∑
N

pN⟨N |Ψ̂†(r)Ψ̂(r)|N ⟩

=
∑
N

pN
∑
kk′

φ∗
k(r)φk′(r) ⟨N |â†kâk′ |N ⟩︸ ︷︷ ︸

=Nkδkk′

Eq. (3.10)
=

∑
k

m̄k|φk(r)|2 = Ncond|φ0(r)|2 +
∑
k>0

m̄k|φk(r)|2 (16)

with m̄k given by the Bose-Einstein distribution in Eq. (3.12). We thus just weigh
the spatial probability density in each single particle state with the mean number of
particles within it and sum up, which makes sense. In the last step we separated off
the ground-state, which contains a BEC and thus cannot be described by the B.E.
distribution.

Now we review or read up on the isotropic 3D harmonic oscillator in spherical po-
lar coordinates (we can use cartesian coordinates, but then the sum becomes near
intractable). Resources I found for this are: Brandsden and Joachain, Quantum me-
chanics, chapter 7.6., this video 3 and a document from the web which I shall co-
upload with this solution. The eigenstates and energies are described by three quantum
numbers nℓm governing energy and angular momentum as in the Hydrogen atom:

ψnℓm(r) = Rnℓ(r)Y
m
ℓ (θ, φ),

Rnℓ(r) =

√
2n+2(n− ℓ)!

π1/2(2n+ 1)!!

1

σ3

( r
σ

)ℓ
e−

r2

2σ2L
ℓ+ 1

2

(n−ℓ)(r
2/σ2),

En = ℏω(n+
3

2
), σ =

√
ℏ
mω

. (17)

Like in the hydrogen atom the energy quantum number constrains the angular mo-
mentum, in the isotropic oscillator the rule is ℓ = 0, 2, 4, · · ·n for even n and
ℓ = 1, 3, 5, · · ·n for odd n.

Expanding the sum in (16) in terms of these three quantum numbers we have:

ρ(r) = Ncond|φ0(r)|2 +
∑
n>0,ℓ

m̄n|Rnℓ(r)|2
∑
m

|Y m
ℓ (θ, φ)|2︸ ︷︷ ︸

=
(2ℓ+1)

4π

, (18)

3In my copy below, I renamed the n+ℓ in the video into n and fixed typos in the normalisation factor.
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where the identity used for spherical harmonics is the reason why the spherical polar
wavefunctions are more practical here than the cartesian ones. For the remaining
sum over Gaussians and Laguerre polynomials there might be analytical formulae,
but we go the brute force approach to just sum these up numerically, as done in
Assignment3 Q3 solution v4.nb. Sadly, even after doing the sum over m analyti-
cally, this runs for a very long time.

Eventually though, it gives us plots as shown in Fig. 1, for T = Tcrit/2. The outer
part of the thermal cloud should be fit by

ρtherm(r) =
Nexc

π3/2R3
e−

r2

R2 , (19)

with R =
√

2kBT/(mω2) (See Pethik and Smith, red line in Fig. 1)4 For T = 0 we
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Figure 1: (left) Condensate density ρcond = Ncond|φ0(r)|2 and (right) thermal cloud ρ(r)−
ρcond from Eq. (18) (dots) compared with semi-classical theory ρtherm(r) from Eq. (19),
see Pethik and Smith. We use dimensionless units with ℏ = m = ω = 1.

get only the part ρcond, for T > Tcrit we get only the part ρtherm. See lecture Example
20 and Pethik and Smith, section 2.3. for some more discussion.

(c) How do you propose to use this to measure the temperature of the Bose gas? [3 pts]

Solution: The width R of the thermal cloud depends on the temperature and since it
takes a quite different shape from the condensate (bi-modal distribution, see example
20), we can separately fit both with a Gaussian and thus extract the temperature.

4It should fit better I think, looks as if there is still some mistake in that script.
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