PHY635, II-Semester 2022/23, Assignment 1

Instructor: Sebastian Wüster

Due-date: Email to TA by 13.1.2023
(1) Two-body wave functions: Consider two particles in one dimension, one at position r_{1} and the other at r_{2}. Translate the following sentences into math, i.e. write down the described quantum many-body states. For each first assume the two particles are distinguishable, then also specify the wave function for indistinguishable Bosons or Fermions. In each case, make a 2D contour drawing in the space $\left(r_{1}, r_{2}\right)$ of the wave-functions, indicating signs or Re and Im as well. [6 points]:
(a) One is in the $n=1$ state of the harmonic oscillator, and the other in $n=2$.
(b) Neutron A is stuck in a nucleus between $r_{1}=0$ and $r_{2}=R$ in its ground-state, while neutron B impinges on the nucleus from negative r_{2} and elastically scatters off it in the backwards direction.
(c) Particle A is localized with Gaussian wavefunction and width σ_{A} near x_{A}. Particle B near x_{B} with width σ_{B}. Compare the two cases (i) $\sigma_{A}=\sigma_{B}=\sigma \ll\left|x_{A}-x_{B}\right|$ and (ii) $\sigma_{A}=\sigma_{B}=\sigma \approx\left|x_{A}-x_{B}\right|$, separately for indistinguishable particles, Bosons and Fermions.

(2) Creation and destruction operators:

(a) Let \hat{a}_{k} be a fermionic destruction operator for a multi-mode system, with index k numbering the mode. Find the simplest expression for the operator product

$$
\begin{equation*}
\hat{a}_{k}^{\dagger} \hat{a}_{\ell} \hat{a}_{\ell}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{k} \tag{1}
\end{equation*}
$$

and justify your answer [2ps].
(b) Consider a bosonic two-mode problem, with \hat{a}, \hat{b} the destruction operator for the two modes, and $|n, m\rangle$ the Fock states describing them. We define the operators $\hat{C}=\hat{a}^{\dagger} \hat{a}+\hat{b}^{\dagger} \hat{b}, \hat{D}=\hat{a}^{\dagger} \hat{a}-\hat{b}^{\dagger} \hat{b}$. First give a physical interpretation of both. Then write the most general separable two-mode state, compare the variance of \hat{C} and \hat{D} and discuss [2pts].
(3) Hamiltonian in second quantisation: Consider N_{e} electrons in some external potential $V(\mathbf{x})$, for example the lattice potential of the ion crystal in a a solid material, interacting through Coulomb interactions with Hamiltonian:

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{N_{e}}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{\mathbf{r}_{i}}^{2}+V\left(\mathbf{r}_{i}\right)\right)+\sum_{i<j=1}^{N} \frac{e^{2}}{\left(4 \pi \epsilon_{0}\right)\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}, \tag{2}
\end{equation*}
$$

where \mathbf{r}_{j} is the position of electron j. Use the single particle basis $|\sigma, \mathbf{k}\rangle$, corresponding to an electron with spin (z-component) $\sigma \in\{\uparrow, \downarrow\}$ and wavenumber \mathbf{k} to convert Eq. (2) into a second quantised Hamiltonian, for operators $\hat{a}_{\sigma \mathbf{k}}\left(\hat{a}_{\sigma \mathbf{k}}^{\dagger}\right)$. Use box-quantised plane wave states, i.e. $\langle\mathbf{x} \mid \sigma, \mathbf{k}\rangle=\frac{1}{\mathcal{V}} e^{i \mathbf{k} \cdot \mathbf{x}} \xi_{\sigma}$, where ξ_{σ} is a spinor. Discuss each term in your Hamiltonian, what is physically implies, why it takes the form it takes, and what conservation laws might be encoded in it. [10 points].
(4) Numerical Quantum Many Body Physics Consider two indistinguishable particles at r_{1} and r_{2} (either Fermions or Bosons), moving in one dimension and interacting with a Gaussian potential (for simplicity). Their Hamiltonian thus is:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r_{1}^{2}}+\frac{\partial^{2}}{\partial r_{2}^{2}}\right)+A e^{-\frac{\left(r_{1}-r_{2}\right)^{2}}{2 S^{2}}} \tag{3}
\end{equation*}
$$

where A is an interaction strength and S an interaction range.
(4a) Find the two-body Schrödinger equation, then express everything in terms of a centre of mass (CM) coordinate $R=\left(r_{1}+r_{2}\right) / 2$ and a relative coordinate $r=r_{2}-r_{1}$, and show that if two separate Schrödinger equations for the CM and relative motion are fulfilled, the origial equation is fulfilled. For this use the Ansatz $\Psi\left(r_{1}, r_{2}, t\right)=\phi(r, t) \varphi(R, t)$ for the two-body wavefunction. Discuss how the centre of mass wavefunction $\varphi(R, t)$ evolves. [2 points]
(4b) Discuss which symmetry properties the relative wavefunction $\phi(r)$ must have for indistinguishable Bosons and Fermions. How does that differ from the properties of the wavefunction for distinguishable particles? [2 points]
(4c) The code Assignment1_phy635_program_draft_v1.xmds is setup to model scattering of the two particles discussed above for potential with $A=A_{1}=3$ and $S=2$, initially treating the particles as (i) distinguishable with initial wavefunction $\phi(r, t=0)=\mathcal{N} e^{-\frac{\left(r-r_{0}\right)^{2}}{2 \sigma^{2}}} e^{-i k r}$ (do not change parameters of that wavepacket). Edit the code such that it can also treat the particles as (ii) Bosons and (iii) Fermions. For each of (i)-(iii) run it for the parameters above, as well as $A=A_{2}=0.8$. Use the script Assignment1_plot_reldens_v1.m to plot the probability density of the relative coordinate r for all six cases. [3 points]
(4d) Discuss and compare your six different results from (b) in the context of the cartoon shown in the lecture on page 12 (above Eq. (1.33)) [3 points]

