
PHY635, II-Semester 2022/23, Assignment 1 solution

(1) Two-body wave functions: Consider two particles in one dimension, one at
position r1 and the other at r2. Translate the following sentences into math, i.e. write
down the described quantum many-body states. For each first assume the two particles
are distinguishable, then also specify the wave function for indistinguishable Bosons
or Fermions. In each case, make a 2D contour drawing in the space (r1, r2) of the
wave-functions, indicating signs or Re and Im as well. [6 points]:

(a) One is in the n = 1 state of the harmonic oscillator, and the other in n = 2.

(b) Neutron A is stuck in a nucleus between r1 = 0 and r2 = R in its ground-state, while
neutron B impinges on the nucleus from negative r2 and elastically scatters off it in
the backwards direction.

(c) Particle A is localized with Gaussian wavefunction and width σA near xA. Particle B
near xB with width σB. Compare the two cases (i) σA = σB = σ ≪ |xA − xB| and
(ii) σA = σB = σ ≈ |xA − xB|, separately for indistinguishable particles, Bosons and
Fermions.

Solution: See Assignment1 solution.nb in numerics solution package.

(2) Creation and destruction operators:

(a) Let âk be a fermionic destruction operator for a multi-mode system, with index k
numbering the mode. Find the simplest expression for the operator product

â†kâℓâ
†
ℓâ

†
kâk (1)

and justify your answer [2ps].

Solution: We can write â†kâℓâ
†
ℓâ

†
kâk = 0. For ℓ = k we have

â†kâkâ
†
kâ

†
kâk =

1

2
â†kâk{â

†
k, â

†
k}âk

Eq. (2.8)
= 0, (2)

otherwise

â†kâℓâ
†
ℓâ

†
kâk

Eq. (2.8)
= −â†kâℓâ

†
kâ

†
ℓâk

Eq. (2.8)
= â†kâ

†
kâℓâ

†
ℓâk =

1

2
{â†k, â

†
k}âℓâ

†
ℓâk = 0. (3)

(b) Consider a bosonic two-mode problem, with â, b̂ the destruction operator for the
two modes, and |n,m ⟩ the Fock states describing them. We define the operators
Ĉ = â†â+ b̂†b̂, D̂ = â†â− b̂†b̂. First give a physical interpretation of both. Then write
the most general separable two-mode state, compare the variance of Ĉ and D̂ and
discuss [2pts].
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Solution: Since N̂a = â†â (N̂b = b̂†b̂) is the operator for the Boson number in mode
A (B), we can see that Ĉ is the operator for the total number of Bosons combining
both modes, and D̂ for the number difference between the two modes. The most
general state for either mode can be written as e.g. |ψa ⟩ =

∑∞
n=0 cn|n ⟩ and |ψb ⟩ =∑∞

m=0 dm|m ⟩, thus the most general separable two-mode state is

|Ψ ⟩ = |ψa ⟩ ⊗ |ψb ⟩ =
∑
nm

cndm|n,m ⟩, (4)

where
∑

n |cn|2 =
∑

m |dm|2 = 1.

We can write the variances as

Var[Ĉ or D̂] = ⟨(N̂a ± N̂b)
2⟩ − ⟨(N̂a ± N̂b)

2⟩2 (5)

as usual, where we have ”+” for Ĉ and ”-” for D̂. Expanding the squares

= ⟨N̂2
a + N̂2

b ± 2 N̂aN̂b︸ ︷︷ ︸
⟨···⟩=⟨N̂a⟩⟨N̂b⟩

⟩ − [⟨(N̂a⟩2 + ⟨N̂b⟩2 ± 2⟨N̂a⟩⟨N̂b⟩] (6)

For the expression at · · ·︸︷︷︸ we used that the expectation value in the separable state

must factor, which you can also explicitly verify with the coefficients given above.
Thus the ± terms cancel and we can group the rest into:

= ⟨N̂2
a ⟩ − ⟨(N̂a⟩2︸ ︷︷ ︸
≡Var[N̂a]

+ ⟨N̂2
b ⟩ − ⟨(N̂b⟩2︸ ︷︷ ︸
≡Var[N̂b]

(7)

Thus the two variances of C and D are equal to each other and equal to the sum of
the number variances for mode A and B. This is only true for the given separable
state, so if these two deviate, the state must be entangled.

(3) Hamiltonian in second quantisation: Consider Ne electrons in some external
potential V (x), for example the lattice potential of the ion crystal in a a solid material,
interacting through Coulomb interactions with Hamiltonian:

Ĥ =
Ne∑
i=1

(
− ℏ2

2me

∇2
ri
+ V (ri)

)
+

N∑
i<j=1

e2

(4πϵ0)|ri − rj|
, (8)

where rj is the position of electron j. Use the single particle basis |σ,k ⟩, corresponding
to an electron with spin (z-component) σ ∈ {↑, ↓} and wavenumber k to convert Eq. (8)
into a second quantised Hamiltonian, for operators âσk (â†σk). Use box-quantised plane
wave states, i.e. ⟨x |σ,k ⟩ = 1√

V e
ik·xξσ, where ξσ is a spinor. Discuss each term in your

Hamiltonian, what is physically implies, why it takes the form it takes, and what conser-
vation laws might be encoded in it. [10 points].

Solution: We identify that the Hamiltonian contains single body and two-body terms.
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Generalising Eq. (2.14) of the lecture to one continuous wavenumber index and one dis-
crete spin index, we should in principle start out with:

Ĥ =
∑
σσ′

∫
dk

∫
dk′Aσσ′(k, k′)â†σkâσ′k′

+
∑

σσ′σ′′σ′′′

∫
dk

∫
dk′
∫
dk′′

∫
dk′′′′Bσσ′σ′′σ′′′(k, k′, k′′, k′′′)â†σkâ

†
σ′k′ âσ′′k′′ âσ′′′k′′′ . (9)

Applying the recipe for the coefficients (2.15) to the single body terms gives us:

Aσσ′(k, k′) = ⟨σ,k |[− ℏ2

2me

∇2
x + V (x)]|σ′,k′ ⟩. (10)

Nothing in Ĥ0 depends on the spin, so the scalar product of the spinors ξ∗σ · ξσ′ = δσσ′.
For the spatial part

Aσσ′(k, k′) = δσσ′
1

V

∫
d3xe−ik·x[− ℏ2

2me

∇2
x + V (x)]eik

′·x

= δσσ′
1

V

[
Vδkk′

(
ℏ2k′2

2m

)
+

∫
d3xe−i(k−k′)·xV (x)

]
= δσσ′

[
δkk′

(
ℏ2k′2

2m

)
+ Ṽ (k− k′)

]
(11)

where in the last step we have used the Fourier transform of the potential Ṽ (k) ≡∫
d3xe−ik·xV (x)/V.
For the two-body terms, we follow the same steps: [to be completed]

Bσσ′σ′′σ′′′(k, k′, k′′, k′′′) = ⟨σ,k;σ′,k′ | 2e2

(4πϵ0)|x− y|
|σ′′,k′′;σ′′′,k′′′ ⟩. (12)

Again nothing depends on spin, giving us Kronecker deltas for the spin indices of the first
and second particle.

Bσσ′σ′′σ′′′(k, k′, k′′, k′′′) = δσσ′′δσ′σ′′′
1

V2

∫
d3x

∫
d3ye−ik·xe−ik′·y 2e2

(4πϵ0)|x− y|
eik

′′·xeik
′′′·y.

(13)

Let us change integration variables to r = (x− y)/2 and R = (x+ y)/2, then (Warning:
The following is not as cosmetically neat as possible and has various uncertaint factors of
2, but it should get the gist of the procedure across. I will enlist the help of some of you
to polish the solution up )

Bσσ′σ′′σ′′′(k, k′, k′′, k′′′) = δσσ′′δσ′σ′′′
e2

4πϵ0V2

∫
d3r

∫
d3R e−ik·[R+r]e−ik′·[R−r] 1

|r|
eik

′′·[R+r]eik
′′′·[R−r]

= δσσ′′δσ′σ′′′
e2

4πϵ0V2

∫
d3r

∫
d3R ei(k

′′+k′′′−k−k′)·R︸ ︷︷ ︸
=Vδ(k+k′−k′′−k′′′)

e−i(k+k′′′−k′−k′′)·r 1

|r|
(14)
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The delta-function enforces k + k′ = k′′ + k′′′, i.e. momentum conservation during the
collision. Hence we must have: k = k′′+q/2 with k′ = k′′′−q/2 defining some momentum
transfer q. Using that definition in the second exponential we now have:

· · · = δσσ′′δσ′σ′′′
e2

4πϵ0
δ(k+ k′ − k′′ − k′′′)

1

V

∫
d3re−iq·r 1

|r|︸ ︷︷ ︸
=Ṽ (q)

, (15)

where we now have expressed everything in terms of the Fourier-transform of the interac-
tion potential, wrt. the momentum transfer.

Insertion of single and two-body operators into the original (16) and using deltas
etc. provides:

Ĥ =
∑
σ

[ ∫
dk

ℏ2k2

2m
â†σkâσk +

∫
dk

∫
dk′ Ṽ (k− k′)â†σkâσk′

]

+
∑
σσ′

∫
dk

∫
dk′
∫
dk′′

∫
dk′′′′

e2

4πϵ0
δ(k+ k′ − k′′ − k′′′)Ṽ (q)â†σkâ

†
σ′k′ âσk′′ âσ′k′′′

=
∑
σ

[ ∫
dk

ℏ2k2

2m
â†σkâσk +

∫
dk

∫
dk′ Ṽ (k− k′)â†σkâσk′

]

+
∑
σσ′

∫
dk

∫
dk′
∫
dk′′

e2

4πϵ0
Ṽ (q)â†σkâ

†
σ′k′ âσk′′ âσ′(k+k′−k′′). (16)

Finally changing variables in the last integration from k′′ to k− q/2 such that
∫ 3
dk′′ →

−
∫ 3
dq/2 we have (more factors of 2 and minus signs? )

· · · =
∑
σ

[ ∫
dk

ℏ2k2

2m
â†σkâσk +

∫
dk

∫
dk′ Ṽ (k− k′)â†σkâσk′

]

+
∑
σσ′

∫
dk

∫
dk′
∫
dq

e2

4πϵ0
Ṽ (q)â†σkâ

†
σ′k′ âσ(k−q/2)âσ′(k+q/2). (17)

(For logical sense, we want to add the q to the outgoing momenta. We can do this simply
by more integration range shifts [or smarter definition of q to begin with])

Please see also second quantization note v7 en.pdf in the .zip file, thanks to
https://kato.issp.u-tokyo.ac.jp/kato/index-e.html ’s upload on his webpage, Eq. (88)-(90).

Discussion of terms: The first term is the kinetic energy. That is diagonal
in wavenumber k and spin σ hence the double sums/integrals collapse into single
sums/integrals. This encodes momentum and spin conservation for the free particle. The
second term is the external potential energy. This still conserves spin, since the potential
was not spin dependent, but can cause a change of the momentum through application of
a force. So here we get a double integral over wavenumbers (momenta). The interaction
term in the final line allows particles to impart momentum onto each other in a collision,
but cannot change their total momentum. This is ensured by the nature of the remaining
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integrations and coefficients. Momentum transfer q has an amplitude set by the corre-
sponding Fourier coefficient of the interaction potential. Each particle separately keeps its
spin, since interactions do not depend on spin.

(4) Numerical Quantum Many Body Physics Consider two indistinguishable par-
ticles at r1 and r2 (either Fermions or Bosons), moving in one dimension and interacting
with a Gaussian potential (for simplicity). Their Hamiltonian thus is:

Ĥ = − ℏ2

2m

(
∂2

∂r21
+

∂2

∂r22

)
+ Ae−

(r1−r2)
2

2S2 (18)

where A is an interaction strength and S an interaction range.

(4a) Find the two-body Schrödinger equation, then express everything in terms of a centre
of mass (CM) coordinate R = (r1 + r2)/2 and a relative coordinate r = r2 − r1, and show
that if two separate Schrödinger equations for the CM and relative motion are fulfilled,
the origial equation is fulfilled. For this use the Ansatz Ψ(r1, r2, t) = ϕ(r, t)φ(R, t) for the
two-body wavefunction. Discuss how the centre of mass wavefunction φ(R, t) evolves. [2
points] vspace0.25cm
Solution: In terms of the two-particle wavefunction ψ(r1, r2, t) we have the TDSE:

iℏ
∂

∂t
ψ(r1, r2, t) =

[
− ℏ2

2m

(
∂2

∂r21
+

∂2

∂r22

)
+ Ae−

(r1−r2)
2

2S2

]
ψ(r1, r2, t) (19)

Inserting the factorisation Ansatz Ψ(r1, r2) = ϕ(r)φ(R) and rewriting the variables on the
RHS as r1 = R− r/2 and r2 = R + r/2, we reach

iℏ
∂

∂t
ϕ(r, t)φ(R, t) = iℏ

[
ϕ̇(r, t)φ(R, t) + ϕ(r, t)φ̇(R, t)

]
=

[
− ℏ2

4m︸︷︷︸
=2M

∂2

∂R2
− ℏ2

m︸︷︷︸
=2µ

∂2

∂r2
+ Ae−

r2

2S2

]
ϕ(r, t)φ(R, t), (20)

with total mass M and reduced mass µ. For the spatial derivatives we used the relation

∂
∂r1

=
∂R

∂r1︸︷︷︸
=1/2

∂
∂R

+
∂r

∂r1︸︷︷︸
=−1

∂
∂r
, and ∂

∂r2
=

∂R

∂r2︸︷︷︸
=1/2

∂
∂R

+
∂r

∂r2︸︷︷︸
=+1

∂
∂r
.

We can clearly see that if we fulfill two separate TDSEs for the relative and centre-of-
mass motion:

iℏφ̇(R, t) = − ℏ2

2M

∂2

∂R2
φ(R, t), (21)

iℏϕ̇(r, t) =
[
− ℏ2

2µ

∂2

∂r2
+ Ae−

r2

2S2

]
ϕ(r, t), (22)

the original equation is fulfilled. The TDSE for the centre of mass, Eq. (21), is just that
of a free particle, so it will e.g. show the diffusion behavior that you know from the free
Gaussian wavepacket.
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(4b) Discuss which symmetry properties the relative wavefunction ϕ(r) must have for in-
distinguishable Bosons and Fermions. How does that differ from distinguishable particles?
[2 points]
Solution: Clearly the requirement that ψ(r1, r2) = ±ψ(r2, r1) translates into ϕ(r) =
±ϕ(−r), i.e. the relative wavefunction must be symmetric or anti-symmetric around the
origin. This is because R does not change when flipping the two locations.

Figure 1: Relative probability density, using the stronger potential with amplitude A1 = 3
for (left) distinguishable particles, (mid) Bosons and (right) Fermions.

(4c) The code Assignment1 phy635 program draft v1.xmds is setup to model scatter-
ing of the two particles discussed above for potential with A = A1 = 3 and S = 2,
initially treating the particles as (i) distinguishable with initial wavefunction ϕ(r, t =

0) = N e−
(r−r0)

2

2σ2 e−ikr (do not change parameters of that wavepacket). Edit the code
such that it can also treat the particles as (ii) Bosons and (iii) Fermions. For each
of (i)-(iii) run it for the parameters above, as well as A = A2 = 0.8. Use the script
Assignment1 plot reldens v1.m to plot the probability density of the relative coordi-
nate r for all six cases. [3 points]
Solution: To adapt the code for Bosons and Fermions, we just have to make
sure that the initial wavefunction is properly symmetrised or anti-symmetrised. See
Assignment1 phy635 solution v1.xmds, line 51. The relative probability density for
the original parameters (A1), the ”strong repulsive potential”, is shown in Fig. 1 (please
flip axes labels r → t in all figures, these are accidentally swapped). Since the particles
strongly repel, they never occupy the same spatial region. Hence densities for Bosons and
Fermions are identical, and could be gotten from the distinguishable ones by symmetrising
the density.

In contrast, for the weaker potential with A2 = 0.8, particles meet each other and
flip sides with some finite probability. This is best seen for distinguishable particles. Since
they thus CAN be found in the same spatial region, the densities for Fermions and Bosons
differ. In particular the density on the centre line (r = 0, means particles on top of each
other), we have zero for Fermions and nonzero for Bosons.

(4d) Discuss and compare your six different results from (b) in the context of the cartoon
shown in the lecture on page 12 (above Eq. (1.33)) [3 points]
Solution: The results illustrates that quantum mechanics gets into trouble with the con-
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Figure 2: Relative probability density, using the weaker potential with amplitude A2 = 0.8
for (left) distinguishable particles, (mid) Bosons and (right) Fermions.

cept of indistinguishable particles (only if) these reach the same spatial region, and due
to the uncertainty of the wavepacket we can no longer trace a particle. If they repel so
strongly that they do NOT enter the same region, I could in principle trace the wavepacket,
but in this case it also does not matter whether the wavefunction is being symmetrised.
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