
PHY635, II-Semester 2022/23, Assignment 4 solution

(1) Dark solitons: Consider an infinitely extended homogenous BEC of atoms with
mass m in one-dimension1 having a background-density ρ and repulsive interactions with
strength U0 > 0 (no trap).

(a) Show that for the right choice of the parameter η and the chemical potential µ, the
condensate wavefunction

ϕ(x) =
√
ρ tanh(x/η) (1)

solves the TIGPE [4].
Hints: tanh(x)′′ = −2sech(x)2 tanh(x), sech2(x) + tanh2(x) = 1.

Solution: The TIGPE without trap is:

µϕ(x) =
[
− ℏ2

2m

∂2

∂x2
+ U0|ϕ(x)|2

]
ϕ(x) (2)

First, note that for |x| → ∞, the proposed ϕ(x) =
√
ρ tanh(x/η) gives |ϕ(x)|2 → ρ =

const, hence the kinetic energy term in the TIGPE for |x| → ∞ is zero and we know
that µ = U0ρ.

When inserting ϕ(x) into (2) the hints give us:

µ
√
ρ tanh(x/η) =

[ 2ℏ2

2mη2
sech(x/η)2 + U0ρ| tanh(x/η)|2

]√
ρ tanh(x/η) ⇒

µ =
ℏ2

mη2
sech(x/η)2 + U0ρ tanh(x/η)

2 (3)

To use the second hint, we need to generate a common prefactor in both terms, which
happens for

η =
ℏ√

mU0ρ
. (4)

For that choice of η we have

µ = U0ρ(sech(x/η)
2 + tanh(x/η)2)

Hint 2
= U0ρ, (5)

which is true, hence the dark soliton solution ϕ(x) =
√
ρ tanh(x/η) solves the TIGPE.

(b) Discuss the implications of the wavefunction in Eq. (1) and identify the physical
meaning of the required η [2].

Solution: The wavefunction describes a density dip at x = 0, since

1Ignoring the technicality that we shouldn’t have one in 1D, in practice we can still have them in a
finite system that really is 3D and just strongly confined in the other two directions.
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|ϕ(x)|2 = ρ tanh2(x/η) vanishes there. Near zero the density drops from ρ at
large distances to zero monotonously over a lengthscale of η, which we recognise as
η =

√
2ξ, where ξ is the healing length. Thus the “size” of the dark soliton, is (once

again) given by the healing length. We can also note that the phase of the condensate
is 0 on one side of it and π on the other, the soliton thus represents a kink (or
discontinuity) in the complex phase of the mean field (which is why density has to
vanish at the centre).

(c) Your derivation in (a) had assumed a constant background density. Under which
conditions do you think you could you still use your result in the centre of a very
large harmonically trapped Thomas-Fermi BEC? If you do this, you need a relation
between atom-number, trapping parameters and peak density in the BEC (without
dark soliton). Find this relation in order to later apply it in Q3(c) [2].

Solution: If the size of the soliton is very small compared to the scale on which the
density of the BEC varies, the solution should still be valid. Thus we need η ≪ Rtf ,
where Rtf is the Thomas Fermi radius.

To relate the atom number and chemical potential for a 1D BEC in the Thomas Fermi
approximation, we use that the atom number is

N =

∫ Rtf

−Rtf

ρ(x)dx =

∫ Rtf

−Rtf

µ− 1
2
mω2x2

U
dx =

4
√
2µ3/2

3Uω
√
m
, (6)

This can be solved to get µ as a function of N

µ =
m1/3(3NUω)2/3

25/3
. (7)

(d) Google the definition of the term “soliton” and discuss it in the context of your
solution above [2].

Solution: We find that a soliton is a solution of a non-linear wave-equation in which
dispersive and nonlinear effects exactly balance, such that the waveform can propagate
without change of shape. While we have not looked at propagation in this equation,
the fact that we found a solution of the TIGPE implies it being a steady state, hence
it “propagates without change of shape”. Here, the repulsive interactions favor the
density dip, while the kinetic energy term tries to remove it, hence the two can balance

(2) Variational calculation of condensate width for weak interaction: Consider
a 1D condensate with weak repulsive or attractive interactions U0. Using the variational
Ansatz:

ϕ(x) =
√
N

1

(πσ(U0)2)1/4
e
− x2

2σ(U0)
2 , (8)

find the optimal σ(U0) (σ as a function of U0) for either sign. Discuss your result [8].
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Solution:
The energy functional is given by :

E =

∫ ∞

−∞
ϕ∗(x)

[
− ℏ2

2m

∂2

∂x2
+

mω2x2

2
+

Uo

2
|ϕ(x)|2

]
ϕ(x)dx (9)

Putting ϕ(x) from Eq. (8) in Eq. (9), the integral yields:

E(σ) = N

(
ℏ2

4mσ2
+

1

4
mω2σ2 +

1

2
√
2π

U0N

σ

)
. (10)

We now find stationary points (including minima) of this energy, by demanding
dE(σ)/dσ = 0, which yields the equation:

− ℏ2

2mσ3
+

1

2
mω2σ − 1

2
√
2π

U0N

σ2
= 0 (11)

In principle, solving the above equation once for Uo → +Uo and Uo → −Uo provides us
with the condensate width. Due to the multiple different powers of σ this is best done on
a computer, see PS for a drawing.

(3) Numerical condensate ground states and grey soliton dynamics:
The script Assignment4 phy635 program draft v2.xmds first evolves the imaginary

time GPE [Eq. (3.48)], for a certain duration of “imaginary time”, followed by the real
time GPE [Eq. (3.41)] for a second interval of “real time”.

(a) Modify the code such that it includes a harmonic potential (use parameters provided),
and give it the expected Thomas-Fermi profile for the chosen atom number and in-
teraction constant as initial state (initial “guess” of the ground-state). You can use
check imagtime.m to see if the imaginary time has converged (how? why does the
script plot what it plots?) and to see how the true the ground-state looks like. Try to
change parameters such that the result looks more (less) “Thomas-Fermi-like”. Also
change your initial state into some crazy choices. Discuss what you find. [4]

Solution: See solution package for code. After getting the TF profile in a harmonic
trap from the imaginary time, we just implant the soliton by multiplying the profile
with tanh(x/η). The trick is to use the right η, for which we can use our result from
Q1(c) and then η = ξ/2, with chemical potential µ inserted into ξ.

The basic imaginary time check is shown in Fig. 1. We plot the final result and
the result half way through the chosen interval of imaginary time. Since they both
match 1:1, we conclude that the imaginary time has converged (the final result no
longer changes for longer duration of imaginary time). We can see that for smaller
interaction strengths or smaler particle numbers, the result looks more like a Gaussian
and less like a TF, with the tails at the edges growing in fractional importance.
For more exotic initial states such as a step function, we see that we nontheless
get the same final answer from the imaginary time evolution, albeit maybe after a
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Figure 1: Output of check imagtime.m for Natoms = 2000 and ω/(2π) = 10 Hz.

longer imaginary evolution time, and with a different looking initial imaginary time
evolution.

(b) Insert your dark soliton from Q1 at x0 = 0 by uncommenting the
filter-block provided and modifying its content. You can now use
density slideshow realttimeonly v1.m to test your answer from Q1. Dis-
cuss. [4]

Solution: See solution codes. We patch on the soliton by multiplying
ϕ(x) ∗= tanh(x/η), where η was found in Q1. We can use the relation from
Q1c to know ρ(0) from ω and Natoms prior to starting the code, otherwise we would
have to extract ρ(0) after the imaginary time evolution and use that one in η. If we
got it right, we see that the dark soliton remains as an almost steady state in the
centre of the trap, with minor wiggles due to the fact that the background is NOT
perfectly constant density. If we got the width wrong, then the width of the soliton
shows oscillations in time, and the BEC will become much more disturbed.

(c) Finally, insert your solution from Q1 at x0 = 0 and then change the complex phase
of the condensate wavefunction on the RHS (x > 0) by 0.05π, thus perturbing the
system. Discuss what you find with check soliton motion.m. Discuss a few options
how you could attempt to analytically understand your observations. [4]

Solution: The script extracts the position of the minimum of the density as a function
of time, and results in something like Fig. 3. The steps are due to the discrete spatial
gridpoints, which allow only certain positions of minima. The script had allowed
to plot a sinusoidal function for comparison, with which you could have found (by
trial and error) that the oscillation frequency is ωsol =

√
2ω, where ω is the trapping

frequency.

This results are not quite obvious, but could have been found e.g. using sophisticated
variational techniques or by solving the BdG equations for a dark soliton in the centre
of a harmonic trap.
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Figure 2: Output of density slideshow realttimeonly v1.m for Natoms = 2000 and
ω/(2π) = 10 Hz.
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Figure 3: Dark soliton position (black) compared with x(t) = x0 sin(
√
2ωt), with x0

matched into the amplitude of oscillations, and ω the trapping frequency.
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