
Week 9
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4 Degenerate Fermi Gases

4.1 Ideal Fermi Gases

In section 3.2 we explored what happens to N non-interacting Bosons as the temperature is de-
creased T # 0. Now we follow the same question for Fermions, thus using the Fermi-Dirac distri-
bution [Eq. (3.11)]:

m̄b =
1

exp[�("b � µ)] + 1

• First di↵erence: m̄b > 0 8"b, µ ! no constraint on µ in contrast to Bose case.

• We can also much more easily take the limit

lim
T!0

m̄b =

(

+1 "b < µ

0 "b > µ

• Let us plot Eq. (3.11) for various parameters
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We see that for T = 0, all states with energy below µ are occupied, and above are not. This
sharp transitions “softens” up, as we increase the temperature.

• We again find, that the Fermi-Dirac distribution approaches the classical Boltzmann distri-
bution, once states are weakly occupied (mn ⌧ 1 ! exp [· · · ] � 1) and energies much higher
than µ.

It is clear in the plot above, that E = µ seems to be a special energy. To figure out what it
means, lets look at non-interacting Fermions in a 3D box potential of cube-side-length L with spin
s (|~s| = 1

2).

left: Particle in a cubic box: We recall that wave-numbers
in trigonometric eigenfunctions sin(klx) are quantized in
each spatial dimension with condition

kl =
nl⇡

L

l 2 {x, y, z}
nl = 1, 2, ...1

Let us first consider the T = 0 case. As before in our discussion of Bosons, µ sets the total (mean)
number of particles according to

N =
X

all states b

m̄b (4.1)
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At zero temperature, we have simply
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where E
n

= n

2⇡2~2
2mL2

is the particle in the box energy. Since the latter is always positive, we see the
first important di↵erence to the Bose case, that we require µ > 0 in order to have any particles.
Then
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(4.3)

=
4⇡

4

Z n
max

0
dn n2 (use 3D spherical coordinates) (4.4)

=
1

3
⇡n3

max (4.5)

where nmax =
q

2mL2µ
⇡2~2 . At the first ⇡ we approximate the sum by an integration. We get a

factor of 2 from summation over the two spin-states ms = +1/2,�1/2 , and we get a factor of 1/8
since the original sum runs only over positive nx, ny, nz, while the integration runs over all 8 sign
quadrants. In the second line, we built in that m̄ will be zero for |n| > nmax
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Altogether we obtained N as a function of µ and can then solve for µ to find the

Fermi-energy (for non-interacting s = 1
2 Fermions in a box)

µ0 = EF = (3⇡2)2/3
~2
2m

✓

N

V

◆2/3

, V = L3 (4.6)

• Thus at T = 0 (or for kBT ⌧ EF ), the Fermions occupy all energy states up to (approx
up to) EF . See blue line (brown line) in the earlier figure. This configuration, where µ is
somewhat more important for the distribution than T , is called degenerate Fermi gas (DFG).

• In phase space, the surface where particles have exactly the Fermi energy EF , is called
Fermi surface.

• The transition to a DFG is less sharp than for a BEC, roughly we can say that the degeneracy
temperature to DFG is

kBT ⇡ EF (4.7)

• Had we used only a single spin-state, the pre-factor would be (3⇡2)2/3 ! (6⇡2)2/3, we shall
require this later. We also define the

Fermi-momentum or Fermi-wavenumber via

~2k2F
2m

=
p2F
2m

= EF , i.e. momentum at Fermi surface (4.8)

kF = [(3⇡2)⇢]1/3, ⇢ =
N

V
(density) (4.9)

Examples:
Electrons in a conductor: Iron (Fe) has a mass density of ⇢ ⇠ 7.8 g/cm3, which gives
roughly an atom number density of ⇢Fe ⇡ 8.3⇥1028/m3. There are two conduction electrons

per atom, hence ⇢e� = 16.6 ⇥ 1028/m3. Using Eq. (4.7) and Eq. (4.6) we can find that
TF ⇡ 1.3 ⇥ 105K and EF ⇡ 2-10 eV. ) Conduction electrons are DFG at all reasonable
temperatures (where the metal still exists).

Cold Fermionic atoms: E.g. 6Li. In atom traps (as discussed for BEC) the density is very
low ⇢ ⇡ 1017/m3. Using the equations above, we find TF ⇡ 80 nK, so this is again the same
range of temperatures as for BEC. We shall later re-calculate EF in a harmonic trap, see
Eq. (4.17), which would be more appropriate for this case.

• We see that how cold is cold enough for degeneracy of Fermions strongly depends on the
system.
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4.2 Degeneracy Pressure

One consequence of populating all states up to energies EF is that these particles may move “fast”
and hence contribute to significant pressure.

left: pressure = elastic collisions o↵ wall

Basic thermodynamic P, V,E relation

P · V =
2

3
Nh"kini, P ! Pressure

For the DFG of particles in box

h"kini = 2

8

R

d3n E(n)

N
,

✓

E(n) =
n2⇡2~2
2mL2

◆

=
4⇡

4

✓

⇡2~2
2mL2

◆

R n
max

0 dn n4

N

=
(exercise)

3

5
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We arrive at the

Fermi-pressure , also called degeneracy pressure:

PF =
2

5

✓

N

V
|{z}

⇢

◆

EF ⇠ ⇢5/3 (4.10)

• This is valid for T . TF and unlike the classical case, there is non-zero pressure all the way
to T = 0.

• You can think of this as Fermions resisting being sqeezed into “same state”. (But note, there
are no interactions.)
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4.3 Applications in Astrophysics

4.4 White dwarf stars

• In our sun, inward gravity is balanced by outward pressure and radiation pressure due to
fusion reaction H+H ! He sustaining temperature T .

• When fuel runs out, heavy stars shrink and get hotter, then do fusion of He ! C,...,Fe.

• The latter won’t work for solar-mass star, because they are too light, so we can ask what
happens when they run out of H, thus only contain He, and can no longer provide fusion? )
In some cases we get a white-dwarf where gravity is balanced by Fermi-pressure (4.10).

Stellar DFG: Assume a compressed star with mass M = 1030 kg, central density ⇢center = 1010

kg/m3, temperature T = 107 K.
⇥

c.f SunM� = 2⇥1030 kg, ⇢center = 1.6⇥105 kg/m3, T = 1.57⇥107

K
⇤

. We assume the old star contains now only ionized Helium.

) M ⇡ Nelecme +Nnucleonsmp

= Nelec(me + 2mp)

⇡ 2Nelecmp

Estimate number density of electrons roughly (turns out, pressure by He nuclei is negligible),

⇢e =
N

V
=

M/2mp

M/⇢center
=
⇢center
2mp

⇡ 3⇥ 10�9electrons/fm3

Fermi temperature TF
Eq. (4.7)

= 8.8⇥ 109 K
) Despite being very hot, electrons at these high densities form DFG!

Stable equilibrium radius R of star (simplify star as a uniform sphere):

0 = dE =
@

@R

✓

�3

5

M2

R
G

| {z }

E
grav

◆

dR �PF (R)(4⇡R2dR)
| {z }

using dE=�PdV from thermodynamics

(4.11)
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We can solve this for the

White-dwarf radius:

R⇤ = N ~2

Gmem
5/3
He M

1/3
(4.12)

• Here N = 3(6⇡2)1/3 ⇡ 11.69 is a numerical pre-factor. Proof: Assigment 5. Test: Sirius B,
M = 1.05M�, R = 5100 km (Formula (4.12) gives 7030 km)

4.4.1 Relativistic DFG

For very dense (massive) white dwarfs, e� near the Fermi surface become so fast that they have to
be treated relativistically. We have to recalculate section 4.1 and section 4.2 using

Ekin = mc2
 

s

1 +

✓

p

mc

◆2

� 1

!

. (4.13)

After a technical calculation, we find the relativistic Fermi-pressure

PF ⇠ const. · ⇢4/3 (4.14)

If we redo 4.11 with this, we find there is no stable R⇤ for a stellar mass above the

Chandrasekhar-limit:
M ⇡ 1.44M� (4.15)

where M� is the solar mass. This is the maximal mass for white dwarf stars.

4.4.2 Neutron stars

• For heavier stars, e� degeneracy pressure cannot halt gravitational collapse once fusion runs
out.

• Once matter reaches density of ⇢ ⇠ 1017 kg/m3 (density of nuclei), electrons and protons
form neutrons via inverse beta decay

77



• At equal density, PF from neutrons is m
e

m
p

times that of electrons, and thus intrinsically much

smaller, see Eq. (4.6)-(4.10). However, at some point the density becomes so high that also
the degeneracy pressure PF of neutrons becomes relevant, and may halt collapse.

Neutron star:
The result, when all matter is converted to neutrons and neutron degeneracy pressure has
halted gravitational collapse. Their typical mass range is

1.4M� < M < 3M�,

with a radius of
R ⇠ 20km.

• If neutron Fermi-pressure is overcome as before in section 4.4.1 (by neutrons becoming rela-
tivistic) ! total gravitational collapse, black-hole.

4.5 Electron gas in metals

• Alkali metals or Copper, Silver, Gold: 1 valence e� per atom. Picture:

• Ions bound by “immersion” in electron gas (metallic binding)

• Electron-electron Coulomb interactions are screened due to background ion sea and hence
weak

• Electron-ion interactions: electrons aren’t really “free”, but see periodic potential V (x) =
V (x+ d)

Bloch theorem: Eigenstates for electrons in the periodic ion potential are of the form

�
k,j(x) = uj(x)e

ik·x (4.16)

where uj(x) = uj(x+ d), i.e the function u possesses the same periodicity properties as the
ionic potential V (x)
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Gives rise to band-structure4 (note, energies for negative k are the same E(�k) = E(k)):

Example, solid material properties:

• From numbers in example on pg. 73, valence electrons form a degenerate Fermi-gas. 3
pictures distinguish:

In the sketches above, blue lines are the bands. We then draw the Fermi distribution func-
tion Eq. (3.11) as green line, with energy axis vertical, and population axis horizontal (so
transposed compared to the figures at the beginning of “week 9”).

4.6 Ultra-cold atomic Fermi-gas

• As in section 3.2, we now focus on a dilute gas of ultra-cold atoms in a harmonic trap, but
here now fermionic atoms.

• Recall that compound objects of an even number of constituent Fermions are Bosons, while
those of an odd number of constituent Fermions are Fermions. Since all items making up

4Top band E(k) curve should be flipped.
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andatom are Fermions (electrons and nucleons, or more fundamentally, electrons and quarks),
we need Nelec+Nprotons+Nneutrons to be odd for a fermionic atom. Since Nelec = Nprotons for
neutral atoms, the sum of the two is always even. Thus fermionic atoms are all those with
an odd number of neutrons.

• We assume spin-polarization for now, (e.g all ").
• We neglect interactions (but show shortly this is even realistic when all | "i).

Expected picture:

• At t = 0, m̄b = 1 up to µ = EF .

• Harmonic trap En
x

,n
y

,n
z

= ~!(nx + ny + nz)

) N(µ) =
X

n
x

,n
y

,n
z

1 (with (nx + ny + nz) <
µ

~! ) = Volume of the green object above

= (µ/~!)3/6

With same reasoning as before, we obtain the

Fermi energy in trap
EF = ~!(6N)1/3 (4.17)

• Using numbers as for the degeneracy temperature of Bose-atoms earlier [after Eq. (3.14)], we
obtain TF ⇡ 187 nK (N = 10000, ! = (2⇡)100 Hz)

• Seems slightly “easier” to reach than BEC, but making a degenerate Fermi gas of cold atoms
turned out harder.
Reasons:

(i) Evaporative cooling (see PHY402 p.89) relies on interactions for remnant atoms to
rethermalize.
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(ii) Fermi-blocking (section 2.2.4): atom has to scatter exactly into the right “empty” state.
We see in the next section that spin-polarized ultracold Fermions barely interact.

• Solution: e.g sympathetic cooling: mix Bosons and Fermions, cool Bosons, Fermions can
interact with Bosons, thus cool down together.

4.7 Ultra-cold Fermion interactions

Let us revisit quantum scattering theory as in section 3.3.1.

The wavefuntion corresponding to this cartoon is

 0(r) = exp(ikz) +
f(✓)

r
exp(ikr)

where r = rB � rA is the relative coordinate between the two collision partners, and r, ✓, (') the
corresponding 3D spherical coordinates.

For Fermions, to fulfill the anti-symmetrisation requirement, we need  (r)
!
= � (�r).

We could try the usual trick:

 (r) =
1p
2

�

 0(r)�  0(�r)
�

. (4.18)

Note

 0(�r) = exp(�ikz) +
f(✓ + ⇡)

r
exp(ikr).

But for S-wave scattering (see pg. 42), f(✓) = const. (indep. of ✓), so construction doesn’t work,
because the scattering part of the wavefunction vanishes in (4.18). We would need f(✓) = �f(✓+⇡),
which would be true only for P-wave scattering (l = 1 relative angular momentum).
But our arguments to neglect P-wave scattering in the ultra-cold regime in section 3.3.1. hold also
for Fermions.

No s-wave scattering or identical Fermions ) Ultra-cold, spin-polarized Fermions are
to a very good approximation e↵ectively non-interacting.
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• It implies that results such as Eq. (4.17) are actually useful.

• Importantly, the basic interatomic interaction potential as sketched in section 3.3.1 [Eq. (3.19)]
would not be much di↵erent between Bosonic or Fermionic isotopes of the same atom. The
statement above only arises e↵ectively in ultra-cold scattering, since the Fermion symmetry of
the many-body wave-function makes it less likely at cold temperatures for the two Fermions
to be ever close to each other.

• The situation changes if we have 2 spin-states ", #, which can take care of symmetrization in
(4.18) ) then S-wave interactions are possible.
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