
Week 8
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3.5 Quantum Field theory of Bose-Einstein Condensates

• – In section 3.4 we dealt with non-interacting quasi particles.

– There also was no conversion from condensed to uncondensed component (heating).

• This section discusses one QFT method that can address both, and mentions few others.

3.5.1 Hartree-Fock Bogoliubov Method

We start again with the Heisenberg equation for the field operator (3.38).

i~ ˙̂ = Ĥ0 ̂ + U0 ̂
† ̂ ̂ (3.82)

and take the expectation value, using  ̂(x, t) = �(x, t) + �̂(x, t), Eq. (3.60), assuming h�̂i = 0

�̇(x, t) = Ĥ0�(x, t) + U0h(�? + �̂†)(�+ �̂)(�+ �̂)i (3.83)

= Ĥ0�(x, t) + U0[|�(x, t)|2�(x, t) + 2h�̂†�̂i�(x, t) + h�̂†�̂�̂i+ h�̂�̂i�⇤(x, t) + h�̂†�̂�̂i]

We in general do not know h�̂†�̂i. Let us define

Normal correlation function:

GN (x,x0) = h�̂†(x0)�̂(x)i (3.84)

Anomalous correlation function:

GA(x,x
0) = h�̂(x0)�̂(x)i (3.85)

• Now we see that we can express pieces of Eq. (3.83) using GN (x,x) and GA(x,x).

• For h�̂†�̂†�̂i we use
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Wick’s Theorem For a Gaussian quantum state we have

hÔ1Ô2Ô3i = hÔ1Ô2ihÔ3i+ hÔ1ihÔ2Ô3i+ hÔ1Ô3ihÔ2i � 2hÔ1ihÔ2ihÔ3i (3.86)

hÔ1Ô2Ô3Ô4i = Ô1Ô2Ô3Ô4 + Ô1Ô3Ô2Ô4 + Ô1Ô4Ô2Ô3 + hÔ1ihÔ2ihÔ3ihÔ4i

Here ÔAÔB = hÔAÔBi � hÔAihÔBi is called a contraction.

• If the operators Ôk are Fermionic, there are some additional minus signs. For each term on the
rhs. of (3.86), first reorder the Ôk by swapping neighbors such that those to be contracted are
adjacent. For each swap, multiply a factor (�1).

BONUS MATERIAL, Gaussian quantum state:
Single mode example: ⇢ = N exp(�n̄â†â� 1

2m̄(â†)2 � 1
2m̄

⇤â2)
e.g. a Coherent State or a thermal State: m̄ = m̄⇤ = 0, n̄ = ��(✏� µ) [See Eq. (3.4)]

Many mode generalisation:

⇢̂ = N exp(
2M
X
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(3.87)

• See e.g. Gardiner/ Zoller “Quantum Noise” 3rd ed. page 119

• See Blaizot and Ripka “Quantum theory of finite systems”(P. 93, Eq (4.47))

• Many variants of Wick’s theorem exist all over QFT. They all express the final result of
bringing operator products involving â, â† into some default order.

• Using Wick’s theorem in the form above, we see h�̂†�̂�̂i = 0 since h�̂i = 0

We arrive at a
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Modified GPE

i~@�(x, t)
@t

= H̄0�(x, t) + U0|�(x, t)|2�(x, t) + 2U0

⌘Ḡ
N

(x)
z }| {

GN (x,x, t)�(x, t) + U0

⌘Ḡ
A

(x)
z }| {

GA(x,x, t)�
⇤(x, t)

(3.88)

• We can see that GN (x,x) = nunc(x) is the density of uncondensed (thermal) atoms, by
comparison with the discussion in section 3.4.4.

• The interpretation of the term ⇠ GN , would thus be an interaction between condensed and
un-condensed atoms.

• To make use of Eq. (3.88), we need to know GN (x,x, t) and GA(x,x, t)

We can get those from the Heisenberg equation for �̂†(x0)�̂(x) and �̂(x0)�̂(x) :

Hartree-Fock Bogulibov equations

i~@GA(x,x0)

@t
= h[�̂(x0)�̂(x), Ĥ]i (3.89)

= [H0(x) +H0(x
0)]GA(x,x

0) + 2U0

h

|�(x)|2 + |�(x0)|2 + ḠN (x)

+ ḠN (x0)
i

GA(x,x
0) + U0

h

�(x)2G⇤
N (x,x0) + �(x0)2GN (x,x0)

+ ḠA(x)G
⇤
N (x,x0) + ḠA(x

0)GN (x,x0)
i

+ U0

h

�(x)2 +GA(x,x)
i

�3(x� x0)

i~@GN (x,x0)

@t
= [Ĥ0(x)� Ĥ0(x

0)]GN (x,x0) + 2U0

h

�(x)|2 � |�(x0)|2 + ḠN (x)

+ ḠN (x0)
i

GN (x,x0) + U0

h

ḠA(x)G
⇤
A(x,x

0)� ḠA(x
0)GA(x,x

0)
i

+ U0

h

�(x)2G⇤
A(x,x

0)� �⇤(x0)GA(x,x
0)
i

(3.90)

• These form a coupled system of equations together with (3.88).

• We have again used Wick’s theorem on terms like h�̂†�̂†�̂�̂i
• The general idea where

1. equation for h ̂i couples to
2. h ˆ † ̂i couples to
3. h ̂† ̂ ̂i

is called cumulant expansion. It has to be truncated at some order, here this is done by using
Wick’s theorem.
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We can define:

• Condensate density |�(x)|2, and condensate number Ncond =
R |�|2dx

• Thermal density ḠN (x) and thermal number Nunc =
R

ḠN (x)dx

• In the HFB equations (3.88) and (3.89), terms have the following interpretation (please see
color file or printout)

– · · · interactions between condensed and uncondensed atoms

– · · ·interactions of uncondensed atoms among each other

– · · · conversion of condensed and uncondensed atoms (heating)

Example, Relation to Bogulibov equations (3.61): Let us consider | i = 0, the
Bogulibov vacuum with zero quasiparticles in any mode, as our initial-state (eternal state in
thre Heisenberg picture). Then we can see that

GN (x,x0) =
X

n

vn(x0)v⇤n(x), (3.91)

GA(x,x
0) = �

X

n

un(x
0)v⇤n(x). (3.92)

For these GA, GN , a lengthy calculation gives from HFB equations Eq. (3.89):

i~ĠN (x,x0) = 0 (3.93)

i~ĠA(x,x
0) = �2µGA(x,x

0) ! GA(x,x
0, t) = e

i2µt

~ GA(x,x
0, 0) (3.94)

To reach this we ignoreG relative to �2 (=fluctuations are small) and assume �(t) = �0(t = 0)
•Thus the Bogulibov vacuum is a steady state of the HFB-equations.

3.5.2 Depletion and Renormalisation

Let us further look at the density of uncondensed atoms nunc(x) = GN (x, x) in the Bogoliubov
vacuum | i = | 0 i. Let us calculate nunc(x) for a homogenous BEC, with constant density ⇢, as
used in section 3.4.1:

nunc =
X

n

|vn(x)|2 ! 1

V
X

q

v2q �!
3D

1

V
Z 1

q=0
dq q2(4⇡)

(Density of states)

D
= 2⇡

L

3

v2q (3.95)

[We have converted sum ! integral, using the density of states D for quantised particles in 3D box
(Ki =

n⇡
L ) [But only one ki per cell not two (±|ki|)]]

=
1

2⇡2

Z 1

0
dq q2v2q

Eq. (3.71)
=

8(mU0⇢)
3

2

3~3⇡2
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Using also U0 =
4⇡~2a

s

m , we find the

Condensate Depletion:

nunc

⇢
=

8

3
p
⇡
(⇢a3s)

1

2 (3.96)

• Depletion implies that, even though we are in the BdG vacuum with zero phonon excitations,
interactions cause some atoms to remain outside of the condensate.

• Typical numbers: as = 5.5nm for Rubidium, ⇢ = 1019/m3 =) nunc
⇢ = 0.2% uncondensed

density.

Let us also calculate

ḠA(x) = GA(x, x) =
X

n

un(x)v
⇤
m(x)

trying as above
= 1 We have a divergent integral

cut-o↵ integral at K
= � 4

⇡2

Z K

0
dq q2uqv

⇤
q

large K
= �4mU0⇢K

⇡2~2 ⌘ �U0⇢ (3.97)

This divergence has the same cause as in the other local quantum-field theories (e.g. particle
physics): The implicit mathematical (but not physical) assumption that the theory is valid up to
arbitrarily high energy scales. Solution: Renormalisation = we absorb “infinities” (in our case K)
into parameters into the Hamiltonian (rather than having them in observables) and define the

Renormalised interaction U

U0 =
U

1� U
where  =

4mK

⇡2~2 (3.98)

•  “infinite”, U0“infinite”
(parameter in Ĥ)

, U “finite”
(observable quantity)

• “Infinite” means 1 in the limit K ! 1
• To see that Eq. (3.98) makes sense, we can calculate e.g. the Born scattering amplitude from

Ĥ
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Example, Renormalised mean-field interaction in modified GPE Eq. (3.88):

i~�̇ = Ĥ0�+ U0|�|2�+

lets ignore Ḡ
N

, assuming small
z }| {

2U0GN� +U0ḠA�
⇤
0 (3.99)

We now use Eq. (3.97) with the replacement U0 ! U

ḠA = �U⇢ (3.100)

in (3.99) to replace U0 ! U . Then

i~�̇ = Ĥ0�+ (U0(1� U))
| {z }

=U from Eq. (3.98) , which is finite

|�|2�+ 2UḠN� (3.101)

(Steps in brown a is allowed because perturbations �̂ (hence GN , GA, ḠN , ḠA) are “small”)
• For numerical implementation : K frequently small enough that renormalisation can be ignored.

Appraisal of HFB:

PROS:

• Seemingly straightforward implementation

• Easy implementation conceptually

• Includes repulsion between BEC and thermal cloud

CONS:

• Subtleties with renormalisation

• Excitations in this formalism have an energy gap, which means that Eq ! nonzero for q!
0. However they should be gapless, according to a Hugenholtz-Pines theorem (related to the
Goldstone theorem).

• Computationally hard in general 3D (in which case correlation functions GA, GN are 6D.

• No �̂†�̂�̂ terms
due to assumption of Gaussian state/ use of Wick theorem. =) Absence of phonon damping:

) This led to the design of various ”fixes” of HFB and alternatives. Some of those are listed below.
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3.5.3 Other Bose-gas quantum field methods

HFB is straightforward to derive but has some issues listed on the previous page. Let us thus list
some alternative methods to study quantum-field corrections beyond the GPE, or fully quantum
models.

I: Truncated Wigner approximation:

• We write W (↵,↵⇤) = F [⇤̂(↵,↵⇤), ⇢̂(t)], where F denotes some functional, ⇤ is an operator
basis and ⇢̂ the time evolving density matrix. In essence this is using the Wigner function
(2.49) in a many-body setting.

• We next convert the time evolution equation for the density matrix into one for the Wigner
function: ˙̂⇢=... ! Ẇ = ....

• The result can be mapped to a set of stochastic di↵erential equations i~↵̇(x) = ...

• These take the same form as the GPE + random noise on the initial state.

• We can obtain all quantum observables, which are correlation functions such has h ̂†(x0) ̂(x)i
from corresponding classical correlation functions over the noisy wave function, e.g. h ̂†(x0) ̂(x)i =
↵⇤(x0)↵(x)� 1

2“�(x� x0)”.

II: t-DMRG:

This is short for time-dependent density matrix renormalisation group. We discretise the full
quantum many body problem (3.38) for example in the position basis:  ̂(x) !  ̂(xk), and then use
an approximate method invented in the quantum information and condensed matter communities.
It works well in 1D and if there is “not too much entanglement” in the system.

III: MCTDH(B):

Multi-configurational time-dependent Hartree for Bosons. Starts with a more complicated Ansatz
than Eq. (3.27) into the many-body SE, that allows multiple strongly occupied states.

IV: Few exact solutions:

In some cases there are a few exact solutions of interesting many-body problems. One example is
the exactly one dimensional system with Hamiltonian

H̄ = �
N
X

n=1

~2
2m

@2

@x2n
+

N
X

n,m=1

U0

2
�(xn � xm) (3.102)

This is the first quantised Hamiltonian that we get for a bunch of Bosons in 1D, with no external
potential V (x) = 0 and contact interactions U just as discussed in section 3.3.1. For the case
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U0 < 0 (attractive interactions), this is called Lieb-Liniger Hamiltonian, and has quantum soliton
solutions:

 (x1, ..., xN ) ⇠ eiKX
CM exp

2

4�m|U0|
2~

X

i<j

|xi � xj |
3

5 (3.103)

[Compare assignment 1, Q1(ii) and last page of week 7]
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