
Week 7
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3.4 Quasiparticles/quantized excitations

In section 3.3 we had assumed the gas is fully condensed and thus e↵ectively replaced

 ̂(x)
| {z }

operator

! �(x)
|{z}

complex function

, completely.

Let us now retain some possibly non-condensed atoms, by writing the

Field operator with fluctuations (c.f. Eq. (3.58))

 ̂(x) = �0(x) +
X

n

un(x)↵̂n � v⇤n(x)↵̂
†
n

| {z }

�̂(x)

(3.60)

In this expression:

 ̂ Bose atomic field operator

h ̂i = �0 (still) condenstate mean field
un(x), vn(x) Bogoliubov mode function

↵̂n, ↵̂
†
n Bogoliubov creation and destruction operators (Bosonic)

�̂(x) fluctuation operator, assumed small (O(�̂3) = 0)

We now insert (3.60) into Hamiltonian (3.37) and choose un, vn such that the Hamiltonian is
diagonalized.

Diagonalized: in terms of Fock states for Bogoliubov operators means it takes the form

Ĥ ⇡
X

n

"n↵̂
†
n↵̂n

This is achieved when un and vn fulfill the
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Bogoliubov-de-Gennes (BdG) equations



� ~2
2m

r2 + V (x) + 2U0|�0(x)|2 � µ� ~!n

�

un(x)� U0�0(x)
2vn(x) = 0



� ~2
2m

r2 + V (x) + 2U0|�0(x)|2 � µ+ ~!n

�

vn(x)� U0�
⇤
0(x)

2un(x) = 0

(3.61)

and

Orthonormality conditions

Z

d3x�⇤0(x)un(x) =

Z

d3x�⇤0(x)v
⇤
n(x) = 0 (modes are orthogonal to condensate)

Z

d3x [un(x)u
⇤
m(x)� vn(x)v⇤m(x)] = �mn

Z

d3x [un(x)vm(x)� vn(x)um(x)] = 0

(3.62)

Using (3.61) the Hamiltonian takes the form of a

Quasi-particle Hamiltonian

Ĥ = E[�] +
X

n

(µ+ ~!n)↵̂
†
n↵̂n (3.63)

where we used the

E[�] =

Z

d3x �⇤(x)



� ~2
2m

r+ V (x) + U0|�(x)|2�(x)
�

Gross-Pitaevskii energy functional

(3.64)

• Eq. (3.63) takes the form of a Hamiltonian for non-interacting entities created by ↵̂†
n.

• For that reason ↵̂n, ↵̂
†
n are called quasi-particle operators.

• Eq. (3.61) takes the same form as Eq. (3.59), which we got starting with a seemingly quite
di↵erent question. We will comment on this later.

• Eq. (3.62) ensure that the quasi-particles are Bosons:

⇥

↵̂n, ↵̂
†
m

⇤

=

Z

d3x

Z

d3y

✓

u⇤n(x)um(y)
⇥

 ̂(x),  ̂†(y)
⇤

+ v⇤n(x)vm(y)
⇥

 ̂†(x),  ̂(y)
⇤

◆

=

Z

d3x

✓

u⇤n(x)um(x)� v⇤n(x)vm(x)

◆

Eq. (3.62)
= �nm. (3.65)

55



• Using (3.62), we can ”invert” (3.60) [exercise] to find

↵̂n =

Z

dx
h

u⇤m(x) ̂(x) + v⇤m(x) ̂†(x)
i

↵̂†
n =

Z

dx
h

um(x) ̂†(x) + vm(x) ̂(x)
i

(3.66)

Hence we also call

um(x)� particle amplitude

vm(x)� hole amplitude

=) A BdG excitation is a superposition of added & subtracted particles.

3.4.1 Phonons

Let us proceed to solve the BdG equations (3.61) for the simple case of a homogenous, constant
condensate =) �0(x) =

p
⇢

(indep of x)

; ⇢ = atom density.

left: This can be realistic when con-
centrating on a small piece of a large
BEC cloud. This would be called the
local density approximation (LDA).

For this case, we make the

Plane-wave Ansatz

uq(x) =
1pV ūqe

iqx vq(x) =
1pV v̄qeiqx (3.67)

• V is the quantisation volume

• q - wave number

• ūq, v̄q - are amplitudes, these are just complex numbers

Insert (3.67) into (3.61) and use � ~2
2mr2uq(x) =

~2q2
2m
| {z }

⌘E
q

uq(x) etc., we can find the matrix equation

✓

Eq + 2U0⇢� µ� ~!q �U0⇢
�U0⇢ Eq + 2U0⇢� µ+ ~!q

◆

| {z }

⌘M

✓

ūq
v̄q

◆

=

✓

0
0

◆

. (3.68)

For this to have any non-trivial solution, we need det(M) = 0, hence

det(M) = �(~!q)
2 + (Eq + 2U0⇢� µ)2 � U2

0⇢
2 = 0. (3.69)
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For a homogeneous condensate we know that µ = U0⇢, which follows from Eq. (3.45). Using that,
we find for the excitations of the condensate the

Bogoliubov dispersion relation

"q ⌘ ~!q =

s

~2q2
2m

✓

~2q2
2m

+ 2U0⇢

◆

(3.70)

Using (3.62), (3.68) and (3.70) we can show, after defining the abbreviation ⇣q ⌘ Eq + U0⇢, that

ū2q =
1

2

✓

⇣q
"q

+ 1

◆

, v̄2q =
1

2

✓

⇣q
"q

� 1

◆

. (3.71)

left: Combined plot of Bogoliubov en-
ergy "q (3.70) (brown), particle ampli-
tude ūq (violet) and hole amplitude v̄q
(green) (3.71).

In the figure we have used the definition of the

Speed of sound

c =

r

U0⇢

m
(3.72)

Comments about Bogoliubov excitations:

• for q ⌧ ⇣, we have "q ⇡ cq~ and |ūq|2+|vq|2 � 1. "q ⇡ cq~ is a linear dispersion relation as for
sound-waves. |ūq|2+ |vq|2 ⇡ Natoms, the number of atoms involved in an exciation (see yellow
box * below). So long wavelength excitations with q ⌧ ⇣ are collective excitations/ sound-waves.

• for q � ⇣, we can approximate "q ⇠ ~2q2
2m , which is the energy of a free particle. Also

|ūq|2 + |vq|2 ! 1. This is a single-atom excitation (⇠ 1 atom got kicked so hard, it no longer
feels the others).
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Number of excited atoms⇤: Let us consider the number of excited atoms

Nexc =

Z

h�̂†�̂idx (see(3.60))

Let | i = |N1N2... i be the Fock state for occupation of Bogoliubov excitations. =)

Nexc =

Z

V
dx

X

qq0

0

B

@

u⇤q(x)uq0(x) ↵̂†
q↵̂q0

⇠�
qq

0 in state| i
+ vq(x)v⇤q0(x) ↵̂q↵̂

†
q0

=↵̂†
q

0 ↵̂q

+�
qq

0

1

C

A

=
X

q

�|uq|2 + |vq|2
�

Nq +
X

q

|vq|2. (3.73)

Since Nq here is the number of excitations, this motivates the allocation of |ūq|2 + |v̄q|2 as
“number of atoms within a single excitation”.

3.4.2 Time-dependence

The overall time-dependence of the field operator in Eq. (3.60) is

Time-dependence of BdG modes

 ̂(x, t) = e�iµ~ t

"

�0(x) +
X

n

un(x)↵̂ne
�i!

n

t � v⇤n(x)↵̂
†
ne

i!
n

t

#

(3.74)

• c.f. Eq. (3.58)

• to see this insert (3.60) into Eq. (3.38)
Heisenberg

using Eq. (3.3.3)
GPE

and Eq. (3.61)
BdG

3.4.3 Coherent vs incoherent excitation

We have now addressed two seemingly di↵erent questions:

(A) In section 3.3.7: If we slightly perturb the GPE solution �(x, t) = �0(x) + ��(x, t), how does
the perturbation �� evolve in time?

(B) In section 3.4: In a QFT problem, which fluctuation modes outside the BEC diagonalize the
Hamiltonian?

Seemingly di↵erent questions give the same BdG equations for condensate excitations, compare
(3.59) and (3.61).
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The reason is that (A) is included in (B). Consider a single Bogoliubov mode only (say n = 1).
Assume its quantum state is | i = |� i

#
coherent state

where � 2 C.

Then
h ̂(x, t)i

#
Eq. (3.74)

= e�iµ~ t
⇥

�0(x) + u1(x)�e
�i!

1

t � v⇤1(x)�
⇤ei!1

t
⇤

which is a BEC mean field perturbation as in (3.59) (So here the population in mode number
one has phase-coherence with the BEC). Had we used ⇢̂ =

P

n pn|n ihn | for mode one, we keep

h ̂i = e�iµ~ t�0(x) with no perturbation of the mean field itself, so in that setting the pn correspond
to incoherent thermal population.

3.4.4 The thermal cloud

In general (3.61) has to be solved numerically, but see Pethick & Smith for some analytical approx-
imation techniques. The numerical solution in a 1D trap gives the following:

left: BdG modes in 1D trap (violet)
are shown as black lines (un) and red
lines (vn). We also show the Thomas-
Fermi shape of the condensate (green).

As n ! 1, the modes approach the following

un ! 'n (S.H.O states, see 1.9)

vn ! 0

As for the homogeneous case, we see that high energy BdG modes essentially become like single-
particle excitations.

The modes now allow us to describe the “thermal cloud”: BEC experiments never reach T = 0,
hence we write
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Thermal cloud state

⇢̂ =
X

N

P
N

|N ihN | P
N

� see Eq. (3.5) (3.75)

for the state of thermal uncondensed atoms.

• We assume there is a (much larger) BEC component co-existing (not described by Eq. (3.75),
but Eq. (3.60), in  ̂ = �+ X̂).

Let us now try to determine the total atom density

n(x) = h ̂†(x) ̂(x)i = |�0(x)|2 + 0
#

Tr[⇢̂↵̂]

+
X

nn0

Tr
h

⇢̂(u⇤n(x)↵̂
†
n � vn(x)↵̂n)(un0(x)↵̂n0 � v⇤n0(x)↵̂

†
n0)

i

(3.76)

= |�0(x)|2 +
X

n

Tr
h

⇢̂
n

�|un(x)|2 + |vn(x)|2
�

↵̂†
n↵̂n + |vn(x)|2

oi

, (3.77)

where, to reach the second line, we have used that the expectation value of terms like ↵n↵
†
n0

in the Fock states appearing in (3.75) is zero, unless n = n0. We thus have a total

Atom density

ntot(x) = |�0(x)|2
| {z }

BEC

+
X

n

8

>

>

<

>

>

:

�|un(x)|2 + |vn(x)|2
�

| {z }

thermal cloud

nth
#

=m̄
b

, see Eq. (3.12)

+ |vn(x)|2
| {z }

quantum fluctuations

9

>

>

=

>

>

;

(3.78)

Example: Approximate v ⇡ 0, un ! 'n =) , then do some technical calculation to reach
the thermal cloud shape:

nth(x) =
Nth

⇡3/2RxRyRz
e
� x

2

2R

2

x e
� y

2

2R

2

y e
� z

2

2R

2

z . (3.79)

left: Thus the thermal cloud
shape is Gaussian, with widths

Ri =
q

2k
B

T
m!

i

, which depend on the

temperature. Together with the con-
densate, we thus have a bi-modal
density distribution, which can often
be used to measure temperature T .
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3.4.5 Superfluidity

We can give a phenomenological definition. A substance is a superfluid if it shows the following
properties:

(i) flow without friction through small capillaries

(ii) perfect heat conductivity (via convection)

(iii) rotation only via quantized vortices (see section 3.3.6)

Found e.g. in dilute gas BEC & cold liquid helium. How does it arise?

Critical velocity:

Consider a BEC through which we drag an obstacle (e.g. Laser potential V (x, t)) with velocity v.

left: Sketch of moving obstacle in BEC
medium in the lab-frame versus obsta-
cle rest frame.

Consider energy of gas in the two frames

Lab-frame Rest frame
Ground-state

(BEC only)
E0

(some internal energy)
E0 + 1

2 N
?

y

N
atoms

m
#

mass of one atom

v2

Excited state
(BEC plus one excitation p)

E0 + "p
#

see Eq. (3.70)
| {z }

V(x,t), Hamiltonian time-dependent
energy NOT CONSERVED

E0 + "p � p · v
|{z}

Doppler shift

+
1

2
Nmv2

| {z }

V(x), energy conserved, can only
create excitation if �E=0

Energy needed to create excitation:

�E = "p � p · v (3.80)

Smallest gap at p k v =) critical velocity for �E = 0 =) 0 = "p� |p||v| =) vcrit = Min
p

h

"
p

|p|

i

.

If it moves slower than vcrit, the obstacle cannot create any excitation. From Eq. (3.70) we then
find
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Critical velocity: below vcrit, there is superfluidity

vcrit = Min
p

2

6

6

4

r

p2

2m

⇣

p2

2m + 2Uo⇢
⌘

p

3

7

7

5

=

r

⇢Uo

m
= c speed of sound (3.81)

(p $ ~q)

• In a usual fluid, there are single particle excitations "p ⇠ p2

2m for arbitrarily small p
(unlike here) =) No superfluidity.

• Thus superfluidity relies on interactions.

3.4.6 Condensate stability

Lets return to Eq. (3.58) for perturbations of the mean field, the same conclusions can be found
from Eq. (3.60).

�(x, t) = e�iµ~ t
⇥

�0(x) + u(x)e�i!t � v⇤(x)ei!t
⇤

• Solutions to the BdG equations (3.61) do not have to have real frequencies ! 2 R, the
frequency can in general be complex ! 2 C.

Example: Homogeneous condensate with attractive interactions U0 < 0

~!q =

s

~2q2
2m

✓

~2q2
2m

+ U0⇢

◆

Im(~!q) 6= 0 for q <

p

4|U0|⇢m
~

• They also do not guarantee that Re[!] > 0, which would make sure that the excitation has
in fact a higher energy than the BEC. For the following, let us write ! = !0

Re
+ i!00

Im
for the real

and imaginary parts of !.

We can classify results into three cases:

!0 > 0,!00 = 0: Usual stable case, oscillatory modes

!00 6= 0: The condensate is dynamically (modulationally) unstable. Small perturbations in
Eq. (3.58) will grow exponentially with growth rate ⇠ (!00)
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Examples:

homogeneous U0 �! bright solitons
rotated BEC �! vortices

BEC U0 > 0
Band-gap

optical-lattice�! gap-solitons

Usually the end-product of this instability is a new (stable) non-linear solution of TIGPE.

!0 < 0: The condensate is energetically unstable

– All is fine in Eq. (3.58), which assumes unitary evolution, but �0(x) is NOT a local
minimum of E[�] Eq. (3.64). Hence any dissipation will destroy �0(x).

Examples: (i) Collapse of a homogenous BEC collapse with attractive interactions U0 < 0.
Here the initial state is dynamically and energetically unstable.

left: Density of initially almost ho-
mogenous BEC during dynamical in-
stability. Unstable modes grow into
bumps in time, the end-result is a
train of bright solitons plus excess
heating.

As an endproduct of the instability, we obtain Bright solitons: Non-linear solutions of TIGPE
for U0 < 0. Using �0 ⇠ sech(x) [soliton] in Eq. (3.61) instead of the initial homogenous state,
all BdG modes are stable in the final state.

(ii) A partially supersonic (vflow > c) flow of a BEC with repulsive interactions U0 > 0 . This
can be dynamically stable but is energetically unstable.

left: Sketch of condensate which
makes a subsonic-supersonic transi-
tion when flowing over an exter-
nal potential hump V (x) (green).
Density (blue), velocity |v| (violet)
can be inferred from Eq. (3.54) and
Eq. (3.55).

Again, we can use a Doppler shift argument as in section 3.4.5 ~!0 = ~! � vk =) vcrit
previous section = some phonons become energetically unstable.

We would reach similar conclusions looking at quantized, incoherent excitations.

How do they all (mean-field BEC, thermal & quantum excitations) play together in a time-
dependent manner? �! Next chapter.
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