
Week 5

PHY 635 Many-body Quantum Mechanics of Degenerate Gases

Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3 Bose-Einstein Condensates

3.1 Quantum statistical physics

For large systems, we cannot know all microscopic detail =) describe with density-matrix (see
1.3.2).

All essential postulates take a very similar form to classical statistical physics.

Quantum statistical ensembles:

Microcanonical ensemble (fixed N,V,E)

⇢̂ =
1

�(E)

X

k
Ek⇡E

| k ih k | (3.1)

• the sum runs over all many-body states k with energy in energy range E  Ek  E+�E, for
a small �E. See Eq. (1.23) for the definition of | k i, Ek, i.e., they are generic many-body
states.

Canonical ensemble (fixed N,V,T)

⇢̂ =
1

Z
e��Ĥ , (3.2)

where � = (kBT )�1 and Z is the partition function, Z = Tr[e��Ĥ ].

• Z normalizes ⇢̂ to fulfill Tr[⇢̂] = 1.

• The exponential of an operator is defined via the power series of exp.
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• In eigenbasis of Ĥ, h k |, we can write

⇢̂ =
1

Z

X

k

e��Ek | k ih k |. (3.3)

• (3.3) is however more general. We may not know the eigenbasis, since finding it is hard for
interacting many-body systems.

Grand-canonical ensemble (fixed µ,V,T)

⇢̂ =
1

ZG
e��(Ĥ�µN̂), (3.4)

where µ is the chemical potential (operationally defined later), N̂ the total number operator

for the system and ZG = Tr[e��(Ĥ�µN̂)] the grand-canonical partition function.

• In eigenbasis of Ĥ and N̂ , h k |, we can write:

⇢̂ =
1

ZG

X

k

e��(Ek�µNk)| k ih k |, (3.5)

where Nk is the number of particles in the state | k i.

We focus on the latter example, and explore the
Consequences for Indistinguishable particles:

Consider single particle basis H0|'m i = "m|'m i and non-interacting many-body Hamiltonian

Ĥ =
X

m

"mâ†mâm. (3.6)

• Convince yourself that Fock states |N i = |N1N2N3 · · · i in (2.2) are eigenstates of Ĥ|N i =
EN|N i with EN =

P
mNm"m.

• From (3.5)

⇢̂ =
X

N

PN|N ihN |

with (define NN =
P

mNm)

PN =
e��(EN�µNN)

P
N e��(EN�µNN)

=
exp [�� (

P
mNm"m) + �µ (

P
mNm)]P

N1,N2,N3,...
exp [�� (

P
mNm"m) + �µ (

P
mNm)]

(3.7)

=

Q
m exp[�Nm(µ� "m)]

Q
l

hP
Nl

exp[�Nl(µ� "l)]
i =

Y

m

Pm(Nm) (3.8)
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with

Pm(Nm) =
exp[�Nm(µ� "m)]P
Nl

exp[�Nl(µ� "l)]
, (3.9)

the probability to have Nm particles in mode number m. To see the latter statement more
rigorously, define this probability as Pm(Nm) =

P̄
N0PN0 with

P̄
running only over all N̄0

that fulfill N 0
m = Nm. Starting from (3.7) you then reach (3.9) (excercise).

Now: What is the mean number of particles in state | b i, with energy "b?

m̄b = hN̂b
#

= â†bâb

i = Tr[⇢̂N̂b] =
X

N

PNTr (Nb|N ihN |)

=
X

N

PNNb
as ~
=
X

Nb

Pb(Nb)Nb (3.10)

So far, our discussion was valid for both, Bosons and Fermions. Now we have to specifiy.

Fermions: Allowed values of Nb = 0, 1

=) m̄b = 0 + Pb(1)⇥ 1 =
exp(�(µ� "b))

1 + exp(�(µ� "b))
=)

Fermi-Dirac distribution Mean number of indistinguishable Fermions in a given state b
with energy "b:

m̄b =
1

exp(�("b � µ)) + 1
. (3.11)

Bosons: All values of Nb = 0, 1, 2, ...,1 are allowed

• Define a = exp[�(µ� "b)] and note that we can then write

m̄b =
X

Nb

Pb(Nb)Nb =
a d
da

⇣P
Nb

aNb

⌘

P
Nb

aNb

• Use geometric series
P

n a
n = 1/(1� a) to reach2

Bose-Einstein distribution Mean number of indistinguishable Bosons in a given state b
with energy "b:

m̄b =
1

exp(�("b � µ))� 1
. (3.12)

2
Using this expression requires a < 1, which is the case since µ < 0, as we shall see shortly.
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• The classical limit m̄b ⌧ 1 is reached when the occupation of each state is very small.
=) exp� 1

=) m̄b = exp(��("b � µ)),

so we recover the Boltzmann-distribution from classical physics.

• For given system (i.e. fixed "k and temperature), the chemical potential controls the mean
total particle number via N =

P
k m̄k.

3.2 Bose-Einstein condensation

Consider non-interacting Bosonic atoms in a harmonic trap, with

"n = ~!(nx + ny + nz +
3

2
).

!4 In section ??, nx, ny, nz label oscillator states not occupation numbers. For those we
use capital N as before

The mean total atom number now is

N =
X

nxnynz

m̄nxnynz

(3.12)
=

X

nxnynz

1

exp[�(~!(nx + ny + nz +
3
2)� µ)]� 1

• Define µ̃ = µ � 3
2~!. We need µ̃ < 0 for reasonable results, which means positive mean

occupation, m̄n>0.

• We see that, for a given state n = (nx, ny, nz), if we lower the temperature (T#) then all mean
occupations go down (m̄n #). On the other hand, for a given state n and T , if we increase
the adjusted chemical potential (µ̃ ") then all mean occupations go up (m̄n ").

• Thus, if we would want to keep the total particle numbers N fixed as we lower the temperature
T , we need to simultaneously increase µ.

• But in that we are limited by the requirement µ̃ < 0, so the question is what happens when
we reach µ̃ = 0? In that case we see for the groundstate occupation: m̄000

#
Ground-state occupation

= 1
e�.0�1

! 1,

which is a problem, while for all other states the formula (3.12) could still be OK.

• The solution is to separately write the occupation of the ground-state as in:

N = N0 +
X

n 6=(000)

m̄n (3.13)

Let us find the lowest temperature Tc where N0 ⇡ 0 is still possible. In other words, what is the
lowest temperature for which we are still able to distribute “enough” atoms among all the excited
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states, using the B.E. distribution function (3.12). This will correspond to µ̃ = 0. Hence:

N =
X

n 6=(000)

1

exp[�c(~!(nx + ny + nz))� µ̃
#
=0

]� 1
�c =

1

kBTc

⇡

Z
dnxdnydnz

1

exp[�c(~!(nx + ny + nz))]� 1
Let n0

x/y/z = ~!nx/y/z

⇡

✓
kBTc

~!

◆3 Z 1

0
dn0

xdn
0
ydn

0
z

1

en
0
x+n0

y+n0
z � 1

=

✓
kBTc

~!

◆3 1X

p=1

Z
d3ne�p(n0

x+n0
y+n0

z)

2

4*
1X

p=1

e�p↵ =
1

e↵ � 1

3

5

| {z }
geometric series

=

✓
kBTc

~!

◆3 1X

p=1

✓Z 1

0
dn0

xe
�pn0

x

◆

| {z }
=1/p

✓Z 1

0
dn0

ye
�pn0

y

◆✓Z 1

0
dn0

ze
�pn0

z

◆

=

✓
kBTc

~!

◆3 1X

p=1

1

p3
=

✓
kBTc

~!

◆3

⇣(3)

where ⇣(s) =
P1

p=1
1
ps is the Riemann-Zeta function. Below TC , we have to allow N0 > 0 in (3.13)

in order to allocate all our N atoms into a quantum state. We thus derived the

Critical temperature for Bose-Einstein condensation in a 3D isotropic harmonic trap

kBTc = ~!N1/3⇣(3)�1/3 = 0.94N1/3~! (3.14)

• depends on the dimension and trap details.

• numerical estimate: N = 10000,! = (2⇡)100Hz =) Tc = 97 nK (nano-Kelvin)

Now let T < Tc. From (3.13) =)

N = N0(T ) +
X

n 6=(000)

m̄n =
#

as before

N0(T ) +

Z
dnxdnydnz

1

exp[�
#

� = 1/kBT (not Tc now)

(~!(nx + ny + nz))]� 1

= N0(T ) +

✓
kBT

~!

◆3

⇣(3) = N0(T ) +

✓
kBT

kBTc

◆3

N =)

Fraction of Bose condensed atoms:

fc =
N0(T )

N
=

"
1�

✓
T

Tc

◆3
#

(3.15)
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• Bose Einstein condensation has the properties of a second order phase transition.

• Unlike most of those, it does not require interactions (except indirectly, for thermalization).

• At T = 0, the system is in the state of N0 = N , with

⇢̂ = |N000... ihN000... | ! | 0 i = |N
#

Fock-state with all N atoms in the ground state

000... i (3.16)

3.2.1 De-Broglie Wave overlap

To work out one more aspect of condensation, let us redo the derivation in 3.2 for Bosons in a 3D
infinite square (cubic) well (of volume L3 = V ).

En =
⇡2~2
2mL2

(n2
x + n2

y + n2
z) k =

n⇡

L

Using a similar calculations as in 3.2 (bit harder due to E ⇠ n2)
one can show:

Tc ⇡
~2

2m⇡kb

✓
N

2.6V

◆2/3

. Let us define the

Thermal de-Broglie Wavelength

�T =
~

p
mkBT

. (3.17)

as the wavelength of a particle with kinetic energy Ekin ⇡ kBT . Mean nearest neighbour distance

of randomly distributed atoms at density ⇢ = N/V is d̄ = 1
3

⇣
3

4⇡⇢

⌘1/3
�(1/3) ⇡ 0.5⇢�1/3. Thus

�Tc = ~

vuut 1

mkB

 
2⇡mkB

~2

✓
2.6V

N

◆2/3
!

=

p
2⇡(2.6)2/3

⇢1/3
⇡ 3⇢�1/3

Thus around Tc, the atomic de-Broglie waves begin to overlap:
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